
MARS ALL CAV DISH 25 COMPUTI 	JURSE 1 WEEKLY

'ALA too. 	 t
411/1111111Pr-

Vol. 2 	 No 25

GAMES PROGRAMMING 25

THE FINAL APPROACH 	 765

Completing the flight simulator program

PERIPHERALS

The easy way to impressive screen graphics

BASIC PROGRAMMING 53

USING CONTROL CODES 	 775

A handy form of programming short cut

BASIC PROGRAMMING 54

When and how to use this versatile facility

MACHINE CODE 26

UNDERSTANDING `FRAMEPRINT' 	781I
Disassembling the graphics routine from Issue 1

BASIC PROGRAMMING 55

HOW COMPUTERS STORE NUMBERS 	790

Unravel the mysteries of floating point arithmetic

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.

For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Paul Chave. Pages 765-769, Paul Chave, Ian Stephen. Pages 770,
771, Chris Lyon. Page 772, Steve Bielschowsky. Page 775, Kevin O'Brien. Pages
776, 777, Ellis Nadler, Funny Business. Pages 784-789, Paul Chave. Pages 790,
791, Ian Stephen. Pages 792, 793, Will Stephen. Pages 794, 795, Grant Symon.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
Rrite to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW BM

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

I 'here are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer,as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries— and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable forthe SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 1611,
4814128, and + ‘11 COMMODORE 64 and 128

El ACORN ELECTRON •
BBC B and B+ 	DRAGON 32 and 64

TANDY TRS80 a D(81 [03 VIC 20 T COLOUR COMPUTER

A KEYBOARD CONTROL ROUTINE
CHECKING FOR LANDING ON

THE RUNWAY
CRASHING

DAMAGE ESTIMATES

Turn off the auto-pilot, but don't
breathe a sigh of relief yet—you're
in control. Using just six keys, you
must bring the aeroplane safely
down to earth

In this third and final part of the flight
simulator program, you'll at last gain control
of the aeroplane.

Three pairs of keys allow you to increase
and decrease the engine speed (revs), turn the
aeroplane, or climb and descend.

You'll find yourself 20,000 metres from
the runway and 2000 metres high. Guiding
the aeroplane in isn't easy, particularly if you

are an inexperienced pilot. Don't expect to
become expert in your first few flights—
piloting an aircraft is a skill that comes to few
people naturally.

As you persevere and become more expert
at controlling the aeroplane, your landings
will improve. After each landing (or crash!)
you will get a report on the Final Flight
Details. Study these to see where you went
wrong, and try to make up for the deficiencies
in your control.

a
3000 LET POW = 0: LET K$=1NKEY$: IF

K$="" THEN RETURN
3010 IF K$="S" THEN LET POW= —1

3020 IF K$="F" THEN LET POW =1
3030 IF K$="Q" THEN LET PT= PT +1
3040 IF K$= "A" THEN LET PT = PT —1
3050 IF K$= "0" AND RL> —30 THEN LET

RL = RL —1
3060 IF K$="P" AND RL <30 THEN LET

RL=RL+1
3070 RETURN
5020 CLS: INPUT "INPUT WIND SPEED

(1-50) MPH",X0
5025 IF X0 > 50 OR X0<1 THEN GOTO 5020
5030 INPUT "WIND DIRECTION (0-359)

DEGREES",X1
5035 IF X1 >359 OR X1 <0 THEN GOTO

5030
5040 LET X0 = X0/3

5050 PRINT "'WIND
SPEED = 0";3*X0;" ❑ M/S": PRINT
"DIRECTION = ❑ ";X1;" ❑ DEGREES"

5055 PAUSE 100: CLS
5060 LET WY= —X0'COS (X1*C)
5070 LET WX= —X0*SIN (X1*C)
5500 GOSUB 3000: GOSUB 1000
5510 IF PZ< =0 THEN GOTO 6000
5520 GOSUB 2000
5530 GOTO 5500
6000 IF ABS RL> RT OR PT>TP OR PT<0

OR AS > 80 THEN GOTO 6030
6010 IF ABS PX > WR OR ABS PY >1000

THEN GOTO 6060
6020 CLS: PRINT "OCONGRATULATIONS

ON A SUCCESSFUL LANDING": GOTO
6100

6030 FOR N=0 TO 20 STEP .5: PLOT
127,130: DRAW 120— INT
(RND*240),45— INT (RND*90): BEEP
.005,20—N: NEXT N

6040 PAUSE 50
6050 CLS : PRINT "A CRASH LIKE THAT HAS

WRECKED 0 ❑ ❑ THE AIRCRAFT AND
KILLED THEE ❑ ❑ ❑ ❑ PASSENGERS!":
GOTO 6100

6060 CLS : PRINT "YOU LANDED OFF THE
RUNWAY"

6070 IF AS < 40 THEN PRINT "FORTUNATELY
YOU WEREN'T GOING ❑ ❑ ❑ FAST
ENOUGH TO DO MUCH DAMAGE": GOTO
6100

6080 IF AS <80 THEN PRINT "AT THAT
SPEED YOU GOT AWAY WITH LIGHT
DAMAGE AND A FEW BRUISES": GOTO
6100

6090 PRINT "MISSING THE RUNWAY AT
THAT SPEED HAS LEFT NO SURVIVORS!"

6100 PRINT "'FINAL FLIGHT DETAILS"
6110 PRINT "'AIRSPEED= ❑ ";INT

AS;" 0 M/S": PRINT
"DISTANCE= ❑ ";INT (SQR
(PY*PY+PX*PX)): PRINT
"PITCH 0 ❑ ❑ = ❑ ";PT

6120 PRINT "ROLLD ❑ ❑ ❑ = ❑ ";RL:
PRINT "RPM0 DODD= 0";INT
(107C)/10;" ❑ X01000"

6130 PRINT "DRIFT0 	= ❑ ";INT ABS
PX;" ❑ MTRS": PRINT
"BEARING ❑ = III";AD;" ❑ DEGREES"

6140 PRINT "'DO YOU WANT ANOTHER GO
(Y/N)?' ,

6150 LET A$=1NKEY$: IF A$ < >"Y" AND
A$< >"N" THEN GOTO 6150

6160 IF A$="N" THEN CLS : STOP
6170 RUN

This time, the first section of the program—
the subroutine from Line 3000 to 3070—
gives you control over the 'plane.

Using IN KEY$ to detect the keypresses, you

can change the revs, climb, and bank. A new
variable, POW, is used in Lines 3010 and
3020 to change the engine revs—see Lines
2225 and 2226 on page 734. POW is set to zero
in Line 3000 each time the subroutine is
called. The S key is used to slow down the
revs and the F key is used to go faster.

Q and A are used to change the rate of
climb by incrementing or decrementing the
variable PT in Lines 3030 and 3040. Finally,
you can use 0 and P to bank the aircraft—
Lines 3050 and 3060 look after this, altering
the variable RL accordingly.

Lines 5020 to 5070 allow you to vary the
level of difficulty of the simulated landing by
giving you the option of having to contend
with a wind of various speeds, and to choose a
direction for it. The easiest option is a wind
speed of 1 m/s at a direction of 0 degrees.
From your choices, Line 5060 works out the
speed of the wind in the forward direction,
and Line 5070 calculates the wind speed from
left to right. SIN and COS are used to work out
the components of the speed vector in each
direction (see pages 584 to 592). WX and WY
are used by the program to alter the position
of the aircraft—GX and GY in Line 5080.

The core of the program is the four lines
from Line 5500 to 5530, which call all the
important subroutines in turn so that the
aircraft's position is updated continuously—
you have already entered these routines.

Line 5510 tests if the aircraft has touched
down by checking whether the height para-
meter, PZ, has reached zero or below. The
program jumps out of the 'airborne' loop, and
enters the routine which checks if the aircraft
has been landed successfully, or not, as the
case may be.

In this routine, Line 6000 checks if the roll
is within the roll tolerance, or the pitch is less
than the pitch tolerance, or the bearing is
greater than the yaw tolerance, or the airspeed
is greater than 80 m/s. If any of these
conditions is satisfied, the aircraft has
crashed. This is because it has landed with
one wing too low, nose down, at an angle
across the runway, or simply too fast. The
program jumps to Line 6030—the crash
routine. Line 6030 draws cracks radiating
from the top centre of the cockpit window. As
each crack is drawn, there's a BEEP, too. After
the crash, there's a pause in Line 6040 before
Line 6050 tells the pilot the bad news, and
then displays all the flight details.

If the aircraft hasn't crashed, Line 6010
checks the position that it landed. If the
machine has landed off the runway, the
program jumps to Line 6060 which tells the
pilot what has happened. If the airspeed is
below 50 m/s, Line 6070 tells the pilot that

the 'plane has landed without being wrecked.
Similarly, Lines 6080 and 6090 tell you
whether the 'plane crash resulted in light
damage and a few bruises, or if it was a total
wreck with no survivors—now start searching
for the black box.

The flight simulator now needs only these few
lines to be complete. Don't forget to use either
a Simons' BASIC cartridge, or the complete
INPUT high-res routine, though.

3000 GET K$:IF K$='"' THEN RETURN
3010 IF K$="S" AND TC >.2 THEN

TC =TC — .2
3020 IF K$ = "F" AND TC <8.8 THEN

TC=TC+ .2
3030 IF K$="Q" THEN PT = PT +1
3040 IF K$ = "A" THEN PT= PT-1
3050 IF K$ = "0" AND RL> —30 THEN

RL= RL —1
3060 IF K$ —"P" AND RL <30 THEN

RL=RL+1
3070 RETURN
5500 GOSUB 2000:GOSUB 3000:GOSUB

1000
5510 IF PZ< =0 THEN 6000
5520 GOSUB 2000:GOSUB 2060
5530 GOTO 5500
6000 IF ABS(RL) > RT ❑ OR PT>TP ❑ OR

PT<0 OR AS > 80 THEN 6100
6010 IF ABS(PX) >WR DOR ABS(PY) >

1000 THEN 6200
6020 PAUSE 1:PRINT

"OCONGRATULATIONS A SUCCESSFUL
LANDING":GOTO 6500

6100 FOR Z=1 TO 15:LINE 80,55,
RND(1)160,RND(1)*110,RND(1)*3 + 1:
COLOUR 6,Z

6110 NEXT Z: PAUSE 3
6120 PRINT "CA CRASH LIKE THAT HAS

WRECKED THE"
6130 PRINT "AIRCRAFT AND KILLED YOUR

PASSENGERS":GOTO 6500
6200 PAUSE 1:PRINT "OYOU LANDED OFF

THE RUNWAY"
6210 IF AS <40 THEN PRINT "FORTUNATELY

YOU WEREN'T GOING FAST"
6215 IF AS <40 THEN PRINT "ENOUGH TO

DO MUCH DAMAGE":GOTO 6500
6220 IF AS <80 THEN PRINT "AT THAT

SPEED YOU GOT AWAY WITH LIGHT"
6225 IF AS <80 THEN PRINT "DAMAGE AND

A FEW BRUISES":GOTO 6500
6230 PRINT "MISSING THE RUNWAY AT

THAT SPEED HAS D ❑ ❑ ❑ LEFT NO
SURVIVORS !"

6500 COLOUR 6,6:NRM:PRINT "gggggg
ggggpipgplpiFINAL FLIGHT
DETAILS"

6510 PRINT "MAIRSPEEDEl=";
INT(AS);"M/S"

6515 PRINT "DISTANCEE =";INT
(SQR(PY . PY + PX . PX)):PRINT
"PJIMPITCH ❑ =";PT

6520 PRINT "MMIROLLEI =";
RL:PRINT "MJNIMPJRPMEI =";
INTO 0.TC)/10;"X ❑ 1000"

6530 PRINT "PJPJIPJDRIFTEI =";INT
(ABS (PX));"METR ES": PR INT
"pi BEARING [7] =";AD;"DEGREES"

6540 PRINT "gg gg DO YOU WANT ANOTHER
GO (UY/NK) ?":FLASH 5,10:POKE
650,0

6550 GET A$:1F A$ < >"Y" AND
A$< >"N" THEN 6550

6560 OFF:IF A$="N" THEN PRINT
"C].":COLOUR 6,1:END

6570 RUN

The program's main loop, from Lines 5500 to
5530, has been changed so that the control
subroutine can be utilized.

Lines 3000 to 3070 give you keyboard
control over the aeroplane. Lines 3010 and
3020 allow you to use S and F to make the
aeroplane go slower or faster—S and F alter
the revs by incrementing or decrementing TC.
Q and A alter the pitch of the aircraft. In other
words, pressing Q will make the aeroplane
descend, and pressing A will make the aero-
plane climb by incrementing or decrementing
PT. Similarly, Lines 3050 and 3060 0 and P
alter the aeroplane's roll—in other words, 0
and P allow you to turn the aeroplane.

If PZ has become less than or equal to zero
in Line 5510, the aeroplane has touched down
and the program jumps to Line 6000. The
Lines from 6000 to 6540 look at where you've
landed it and how well.

Line 6000 checks if the roll and pitch are
within the allowable limits, whether the bear-
ing is correct, and if the airspeed is below 80
metres per second. If the speed or orientation
of the aircraft is outside the range permitted,
the program jumps to Line 6100 which draws
a series of cracks in the cockpit window.
Following a short PAUSE, Lines 6120 and
6130 imply an investigation and possible
prosecution by the Civil Aviation
Authority—in other words, you crashed.

Line 6010 checks the position of the
aeroplane relative to the runway. Line 6200
displays the bad news: YOU LANDED OFF
THE RUNWAY. If the airspeed at that time
was less than 40 metres per second, Lines
6210 and 6215 tell the pilot
FORTUNATELY YOU WEREN'T
GOING FAST ENOUGH TO DO MUCH
DAMAGE. The program jumps to Line
6500

If the speed was between 40 and 80
metres per second, the message AT THAT
SPEED YOU GOT AWAY WITH LIGHT
DAMAGE AND A FEW BRUISES. If the
speed was greater than 100 metres per sec-
ond, it's a case for the Civil Aviation Author-
ity again.

If the aeroplane has landed correctly, the
computer reaches Line 6020 which displays
the successful landing message. Whatever the
outcome of the touchdown, the next stop is
the Flight Details routine starting at Line
6500.

Line 6500 displays the flight details title
before Lines 6510 to 6530 display the values
of all the variables relating to the aeroplane.

This is where you can judge exactly how
you've done.

At the end of the program there's an
ANOTHER GO? routine so you can try
again.

1080 IF INKEY(— 99) AND TC >.2 THEN
TC =TC — .2

1090 IF INKEY(—74) AND TC < 8.8 THEN
TC =TC + .2

1100 IF INKEY(— 56) THEN PT= PT + 1
1110 IF INKEY(—87) THEN PT= PT-1
1120 IF INKEY(—98) AND RL> —30 THEN

RL = RL —1
1130 IF INKEY(—67) AND RL<30 THEN

RL=RL+1
1180 CLS:INPUT"ENTER WIND SPEED (1-50)

M/S AND DIRECTION (0-359)
DEGREES ❑ ",X0,X1

1190 IF X0>50 OR X0 <1 OR X1 >359 OR
X1 <0 THEN 1180

1320 IF ABS(RL) > RT ❑ OR PT>TP ❑ OR
PT<0 OR AS>80 THEN 1350

1330 IF ABS(PX)>WROOR ABS(PY) >
1000 THEN 1380

1340 CLS:PRINT ""CONGRATULATIONS A
SUCCESSFUL LANDING":GOTO 1420

1350 GCOL0,3:MOVE 100,500:DRAW
100 + RND(500) + 310,500 + RND(300)
+50:DRAW1180,900:MOVE 100,900:
DRAW 100+ RND(500) +310,500+ RND
(300) +50:DRAW1180,500

1360 FOR K=1 TO 4000:NEXT:PRINT
1370 CLS:PRINT"A CRASH LIKE THAT HAS

WRECKED THELED ❑ OLD
AIRCRAFT AND KILLED ALL YOUR
PASSENGERS":GOTO 1420

1380 CLS:PRINT"YOU LANDED OFF THE
RUNWAY"

1390 IF AS <40 THEN PRINT"FORTUNATELY
YOU WEREN'T GOING FAST ❑ ❑ ❑ ❑
❑ ❑ ENOUGH TO DO ANY
DAMAGE":GOTO 1420

1400 IF AS <80 THEN PRINT"AT THAT
SPEED YOU GOT AWAY WITH
LIGHT ❑ ❑ D DAMAGE AND A FEW
BRUISES":GOTO 1420

1410 PRINT"MISSING THE RUNWAY AT THAT
SPEED NASD ❑ EIELEFT NO
SURVIVORS !"

1420 PRINT""FINAL FLIGHT DETAILS"
1430 PRINT'AIR SPEEDO OE ❑

❑ ❑ = I=1";INT(AS);" ❑ M/S":
PRINT"DISTANCE ❑ ❑ ED ❑ OE
=0";INT(SQR(PY*PY+PX*PX)):
PRIN1— PITCH0 0 00000000
= 0";PT

1440 PRINT"ROLLO 	ODE
❑ ❑ ❑ = 0";RL:PRINT"RPM
❑❑❑❑❑❑❑❑❑❑❑ 0= ❑ ";
INT(10•TC)/10;" X 1000"

1450 PRINT"DRIFT ❑ ❑ ❑ ❑ ❑ ❑ [171
❑ ❑ ❑ =0";INT(ABS(PX));
"0 METRES":PRINT"BEARING
❑❑❑❑❑❑❑❑ = ❑ ";AD;"7
DEGREES"

1460 PRINT"`DO YOU WANT ANOTHER GO
(Y/N) ?"

1470 A=GET:IF A=78 THEN END
1480 IF A=89 THEN RUN ELSE 1470

Lines 1080 to 1130 give you control over the
aeroplane. Pressing the 'RETURNS key will
increase the revs, while pressing the space bar
will decrease the revs by incrementing or
decrementing the TC variable. P and L control

the pitch, or the climb and descent—the
variable PT. The aeroplane can be turned by
changing the roll—press Z or X.

Lines 1180 and 1190 allow the pilot to
choose windspeed and direction against
which to land so that the level of difficulty can
be varied. Line 1180 is the prompt, and Line
1190 is a check that the numbers chosen are
within the permitted range.

The remainder of the program is con-
cerned with the possible outcomes of touch-
ing down—has the aeroplane been landed
successfully, or have all the passengers been
killed in a total wreck? Line 1320 checks if the
roll, pitch and speed are within the limits
which will allow a successful landing. If any
of these limits is exceeded, the program jumps
to Line 1350, the crash routine, displaying up
a cracked window before Line 1370 tells the
pilot the bad news. The program jumps to the
flight details routine at Line 1420 onwards.

Line 1330 checks if the aeroplane has
landed on the runway. If it hasn't, Line 1380
tells the pilot the bad news. Landing off the
runway doesn't automatically wreck the
aeroplane—if it was going slowly enough
there may be minimal damage. Lines 1390
and 1400 check the airspeed at landing, and
report the level of damage. If the speed was
over 100 metres per second, Line 1410 tells
the pilot MISSING THE RUNWAY AT
THAT SPEED HAS LEFT NO
SURVIVORS—the newsmen are on their
way!

The Final Flight Details are displayed on
the screen by Lines 1420 to 1450. The values
of each of the variables relating to the aero-
plane are PRINTed as a guide to the level of the
pilot's expertise.

For those of you who haven't tired of the
slaughter of poor innocent passengers, Lines
1460 to 1480 are an ANOTHER GO?
routine.

Before you RUN the program, delete Line
5505. Tandy owners should also change Line
3000 to REM, change 239 in Line 3010 to 251,
change 251 in Line 3020 to 254, and change
223 in Lines 3030 and 3060 to 247.

3000 IF PEEK(337) = 255 THEN RETURN
3010 IF PEEK(341) =239 AND TC > .2 THEN

TC =TC — .2
3020 IF PEEK(344) =251 AND TC <8.8 THEN

TC =TC + .2
3030 IF PEEK(341) =223 THEN PT= PT+1
3040 IF PEEK(342) =223 THEN PT = PT — 1
3050 IF PEEK(343) =223 AND

RL > — 30THEN RL = RL —1
3060 IF PEEK(344) =223 AND RL<30THEN

RL=RL+1
3070 RETURN
5020 CLS:INPUT"INPUT WIND SPEED (1-50)

M/S";XO
5025 IF X0>50 OR X0<1 THEN 5020
5030 INPUT"WIND DIRECTION (0-359)

DEGREES' ;X1
5035 IF X1 >359 OR X1 <0 THEN5030
5040 X0=X0/3
5050 PRINT:PRINT"WIND SPEED= ❑ ";

3 .10;"M/S":PRINT"DIRECTION= ❑ ";
X1;"DEGREES"

5060 WY= XO*COS(X1*C)
5070 WX= —X0 .SIN(X1T)
5500 GOSUB3000:GOSUB1000
5510 IFPZ< =0 THEN6000
5520 GOSUB2000
5530 GOT05500
6000 IF ABS(RL)>RT OR PT> TP OR PT<0

OR AS > 80 THEN 6100
6010 IF ABS(PX) > WR OR ABS(PY) > 1000

THEN6200
6020 CLS:PRINT" OCONGRATULATIONS

A SUCCESSFUL ❑ ❑ ❑ ❑ LANDING"
GOT06500

6100 LINE(0,0)— (RND(128) +63,
RND(96) + 48),PSET:LINE — (255,
191),PSET:LINE(255,0)—(RND

(128) +63,RND(96) + 48),PSET
LINE— (0,191),PSET

6110 FORK =1T02000:NEXT
6120 CLS:PRINT" ❑ A CRASH LIKE THAT

HAS WRECKED1110 ❑ THE AIRCRAFT
AND KILLED YOUR ❑ ODD
PASSENGERS":GOT06500

6200 CLS:PRINT" ❑ YOU LANDED OFF THE
RUNWAY"

6210 IF AS <40 THEN PRINT
" 0 FORTUNATELY YOU WEREN'T

GOING ❑ ❑ ❑ FAST ENOUGH TO DO
MUCH ❑ DAMAGE":GOT06500

6220 IF AS <80 THENPRINT" El AT THAT
SPEED YOU GOT AWAY WITH LIGHT
DAMAGE AND A FEW
BRUISES":GOT06500

6230 PRINT" ❑ MISSING THE RUNWAY AT
THAT ❑ ❑ 111 ❑ ❑ ❑ SPEED HAS LEFT NO
SURVIVORS!),

6500 PRINT:PRINT"D FINAL FLIGHT
DETAILS"

6510 PRINT:PRINT" ❑ AIRSPEED ❑ =";
INT(AS);"M/S":PRINT" ❑ DISTANCE
❑ =";INT(SQR(PY*PY+ PX*PX)):
PRINT" ❑ PITCH OD = ";PT

6520 PRINT" ❑ ROLL El ❑ ❑ 	= ";RL:
PRINT" ❑ RPM ❑ ❑❑❑❑ =";INT

(107C)/10;" CAL] 1000"
6530 PRINT" ❑ DRIFT ❑ 	=";INT

(ABS(PX));"METRES":PRINT
"EJ BEARING ❑ ❑ = ";AD;"DEGREES"

6540 PRINT:PRINT"El DO YOU WANT
ANOTHER GO (Y/N) ?"

6550 A$=INKEY$:1F A$ < >"Y" AND
A$< >"N" THEN 6550

6560 IF A$="N" THENCLS:END
6570 RUN

The main loop of the program from Line
5500 to Line 5530 now calls the control
subroutine which allows you to take control
from the manic autopilot. The control sub-
routine extends from Line 3000 to 3070.
Line 3000 checks if no key is being pressed;
Lines 3010 and 3020 read the F and S—faster
and slower—keys; Lines 3030 and 3040 read
the up and down arrow keys, to control ascent
and descent; and Lines 3050 and 3060 read
the left and right keys which bank the aero-
plane to turn it.

Lines 5020 to 5070 allow you to vary the
level of difficulty of the landing by varying
the wind direction and speed. The easiest
option is a speed 1 m/s at a direction of 0
degrees. From your choices, Line 5060 works

out the windspeed in the forwards direction,
and Line 5070 works out the windspeed in
the left/right direction. WX and WY are used
to alter the position of the aircraft.

If Line 5510 finds that the aeroplane is on
the ground, the program jumps to Line 6000.
Line 6000 checks that the roll, pitch and
speed are within acceptable limits. If any one
of these is exceeded, Line 6100 draws some
cracks in the cockpit window and Lines 6110
to 6230 display the message.

If the aeroplane's orientation and speed
were correct for landing, Line 6010 checks
whether the aeroplane has landed on the
runway. If it has, Line 6020 tells the pilot of a
successful landing. If it has touched down off
the runway, all might not be lost.

If the speed is below 40 m/s Line 6210 tells
the pilot that there isn't much damage. If the
speed was between 40 and 80 m/s, Line 6220
tells of light damage and a few bruises. If the
speed was any more than 80 m/s, it's curtains.

Lines 6500 to 6530 display the values of all
the variables connected with the aircraft at the
time of landing. Take notice of these, and you
should improve.

Finally, Lines 6550 to 6570 give you a
chance of another go.

`Sketching' with dozens of program
instructions isn't a very natural way
to make pictures. But with a
graphics pad, you can draw as easily
as with pencil and paper

One of the areas where computers have
fulfilled their early promise—and sometimes
exceeded all expectations—has been that of
CAD, or computer aided design. Computers
of all sizes, from mainframes to small home
micros, have been used in all aspects of
design. Fashion designers and local builders
are now using micros for their work, and the
role of computers in design is no longer
restricted to grand plans for rebuilding city
centres or billion-dollar projects such as the
Space Shuttle.

Most home micros have been designed
with good graphics capabilities, originally
with games in mind, and these capabilities can
be exploited by the home user to produce
some spectacular results.

One of the most useful peripherals for
exploring computer graphics is the graphics
pad, sometimes called a graphics tablet or

graphics board. You can sketch on this with a
stylus in what is virtually a form of freehand
drawing. The movement of the stylus on the
surface of the pad is duplicated on the screen
by a clever combination of software and
hardware.

To achieve the equivalent results without a
peripheral of this type would involve con-
siderable amounts of programming—and you
could not get the same flexibility, nor the
ability to amend or erase your creations at
will.

Even the simplest graphics pad enables you
to draw lines on the screen and then add your
own colour to the drawing. Areas can be filled
in with colour although, of course, this is
limited to colours that the computer is cap-
able of producing. Colours can usually be
changed at the touch of a couple of keys or by
selection using the pad itself. 'Brush' strokes

can also be variable in size so that you can
draw with a thick brush or a thin brush, in
single or multiple lines—sometimes even with
a stippling effect.

PAD FEATURES
Most graphics pads and associated software
offer similar facilities as far as drawing is
concerned. It's in the manipulation of the
drawing that the major differences in their
capabilities occur. For example, some
graphics pads have a 'zoom' facility which
allows you to zoom in to a small area of the
drawing to work on it in more detail or to
make small corrections—often down to indiv-
idual pixels.

A good graphics pad will enable you to
move parts of a drawing around the screen
and to repeat one element of a picture several
times. Some allow you to swap around ele-

THE ADVANTAGES OF PADS
DIFFERENT TYPES

DIGITIZATION AND
GRID MAPPING

READING SIGNALS

DRIVER SOFTWARE
USING A PAD

SPECIAL FEATURES
SAVING YOUR WORKS

OF ART

ments of a picture within the same picture and
even between different pictures. You may also
be able to create mirror images automatically.
It's usually possible to SAVE a design, but
different graphics pads in conjunction with
different micros SAVE the screen in different
ways. As a result, there are therefore vari-
ations in the facilities available with each pad.
Some enable you to use the SAVEd design in
other programs—so you can create a back-
ground for a game you have written, for
example. Other pads are not so versatile.

HARDCOPY
Pretty screen pictures which are used only in
isolation for displays are not really, in the long
run, of very much use. Most home computers
can be programmed to dump a screen picture
to a suitable printer and this facility should be
available on the graphics pad if you do want

some form of hardcopy. Even though this is
unlikely to be in more than one colour,
different hues can be suggested by use of
various methods and styles of hatching and
shading.

But for the very best results—certainly if
you want reasonably good colour copies—you
need a plotter—a very sophisticated sort of
printer which draws rather than prints. Plot-
ters are often very expensive, and one thing to
watch out for is that the manufacturers of
your micro or graphics pad may not have
envisaged its use with a plotter, so obtaining a
full colour hard copy of your screen design
may be difficult.

TYPES AVAILABLE
There are several graphics pads for each
model of home computer. Popular examples
include the Grafpad for the Spectrum, Com-

modores and BBC; the KoalaPad for the
Commodore 64; and the Touchmaster for the
Dragon—although new designs are const-
antly being introduced. The most obvious
difference between models is the size of the
pad—commonly anywhere from around
100mm x 100mm to 250mm x 300mm-
which clearly has a bearing on how easy it is to
draw accurately on the surface. Apart from
this, these pads differ in the way they work
and in what they can actually do—although
much of this is due to the software which
controls them.

An alternative to the true graphics pad is to
fit your computer with one of a number of
pantograph-inspired digital tracers that are
available for each machine. These are usually
cheaper than pads, and are supplied from
quite a few 'cottage industry' sources—
usually by mail-order. These are better for

tracing out intricate shapes from an existing
pattern—maps, for example. (However, you
can do this sort of work on a pad by
improvizing a suitable overlay, for example,
by tracing the pattern, then laying it on the
pad.) But the tracers' construction does not
make them very suitable for the sort of free-
hand drawing that you can do with an
unrestricted stylus on a graphic pad.

DIGITIZATION
A graphics pad is actually an example of a
digitizer. The principle of digitizing is used
extensively in computers since many comput-
ing applications are, fundamentally, all about
turning an analogue signal into a digital
signal. An analogue system signal varies
continuously and may take any value within
its ultimate limits—an example is an ordinary
volume control. But the computer can only
understand a digital signal—the difference
between off anal on, between 0 and 1, between
open and closed. Digitization is the process of
turning a continuous analogue signal, in
which some of the elements may be 'grey' or
half on and half off, into a definitive signal
which can be understood by computers.

The graphics pad or digitizer turns pic-
tures into numbers. The computer then turns
those numbers back into a picture. Without a
method of turning pictures into numbers it

would be impossible for computers to 'under-
stand' pictures and a great deal of the
graphics-related work carried out by com-
puters would be impossible.

The process of digitizing involves dividing
a picture up into as many equal parts as
possible. The greater the number of parts—
usually squares, which give computer-
enhanced pictures their characteristic 'bitty'
look—the greater the ability to record detail.
The number and size of the squares is
dependent on the digitizer and the computer.
In commercial computer graphics systems,
the resolution of the picture is high enough so
that it only appears slightly grainy. Many of
the pictures in INPUT are in fact generated
using a digitizing tablet and mainframe com-
puter. The graphics pad for your micro needs
to do exactly the same thing, except that the
picture is necessarily rather less detailed.

GRID MAPPING
A typical text, or low-resolution, screen on
home computers is around 40 columns wide
by 25 rows deep—although individual ma-
chines vary slightly from this size. This
means that the screen is divided into 1000
squares or so. In this situation it would be
pointless to use a digitizer which was able to
divide a picture into any more than 1000
squares. Although more could be defined, the

computer would be unable to use that inform-
ation. But working with the computer's high
resolution screen, which allows pixel-by-
pixel definition means that the typical
graphics pad can use more squares and hence
produce better graphics.

If lines were drawn on the picture to
illustrate how it is divided up into squares it
would look as if graph paper had been laid
over the top—something like the grid on a
map. Some pads, for example, the Grafpad,
are in fact divided up in exactly this way. In
fact, the digitizer, and the graphics pad, use
numbers to describe where each square be-
longs in the same way that we use numbers as
map references.

Each square along the top or bottom (the
horizontal or X-axis) is numbered and the
squares are also numbered down the side (the
vertical or Y-axis). On a system where the
origin is the lower lefthand corner, square
10/23, for example, is 10 squares in from the
side and 23 squares up from the bottom. This
means that any position on the picture can be
converted into a number which the computer
can understand.

Graphics pads use a variety of approaches
to the problem of producing a signal that the
computer will be able to understand, but they
all use some form of analogue to digital (A–D)
converter.

As the name suggests, this is a form of
interface which can take an analogue signal (in
this case a constantly variable voltage), and
turn it into a digital signal that the computer
can understand. The A–D converter does this
by gradually increasing its output current
step by step until it is one step above the
incoming current produced by the graphics
pad. The time taken for this to happen gives a
number which is then sent to the computer
for it to interpret.

Two A–D converters are needed, one for
the X-axis and another for the Y-axis. Norm-
ally, each number is sent along to the com-
puter in a single byte. That magical number
256 crops up here again, as it so often does in
discussions about computers. The eight bits
in a byte can represent any number from 0 to
255-256 numbers in all. This means that the
grid could conveniently measure 256 squares
by 256 squares. Square 0/0 (all the bits in the
two bytes set to 0) would represent the top left
corner of the graphics pad, and square
255/255 (all the bits in the two bytes set to 1)
would represent the bottom right corner.
Values in between would specify every other
possible position.

The information contained in this signal is
then transferred directly onto the screen so
the computer doesn't have to store inform-
ation about the coordinates of each line. If it
did need to store these coordinates then the
amount of memory needed would be
enormous—far more than a home computer
could cope with. And you still need room in
the memory for the colour plus, of course, the
graphics pad program itself.

Most graphics pads are designed so the
resolution matches the computer's display,
which means that the number of squares on
the pad is the same as the pixels on the screen.

PRODUCING SIGNALS
The biggest differences between graphics
pads lie in the methods chosen to produce a
signal in the first place. Some require a special
stylus and rely on contact between the stylus
and the active area of the pad to produce a
signal, while others are touch sensitive to a
stylus, or even finger pressure.

The way that graphic pads work is best
understood by looking at the simpler methods
of construction, although these are now
gradually being superseded.

Perhaps the simplest method of all is to use
two sliders, one horizontal and one vertical, to
which potentiometers are attached, typically
by a pulley arrangement. As each slider moves
up and down or across the board, the voltage
from each potentiometer changes, giving you
unique values for each X and Y position.
Another method which also uses potent-
iometers is the digital tracer, which has an
articulated 'arm'. In this system, the stylus
head is pivoted from a fixed point. The arm
has two joints, one at the 'shoulder' and one at
the 'elbow'. Once again, potentiometers at
each joint will give a unique combination of
voltages for each position on the board. It is
this method that is used by the RD Digital
Tracer for the Spectrum. Strictly speaking,
these 'coordinates' are not X and Y coordi-
nates in the normal sense, because the potent-
iometers are not operating solely in the X and
Y directions.

Touch sensitive graphics pads usually rely
on two sheets separated by a small gap, with
lines of conducting material painted on the
facing surfaces. One sheet carries horizontal
lines and the other vertical lines. When
pressure is applied two of these 'wires' make
contact.

The remaining group of graphic pads are
those that produce a signal as a result of
interaction between a stylus and wires in the
surface of the pad. Included in this group is
the Grafpad on which the stylus location is
detected by electromagnetism.

DRIVER SOFTWARE
Despite the obvious hardware differences
which any user will appreciate, the software is
what actually allows the graphics pad to
control the computer. And since it defines not
only the available features, but also the ease of
use of the pad, the software should; more than
anything else, influence your choice. To
assess this, you really need to see the system in
operation.

To an extent, the quality of the system
must depend upon your computer as well.
Obviously, the faster it is and the bigger its
memory, the more scope there is for a so-
phisticated graphics pad. The best of these do
require a great deal of memory, which is
sometimes in short supply for hires applic-
ations. Some systems are either cartridge or
disk-based, so that swapping data between the
computer and its storage system is relatively
quick and easy—extending their capabilities
by using the storage system as virtual
memory.

And of course, the graphics pad software
can only make use of the facilities which are
available in your machine's hardware. So you
can't expect to use a higher definition, or
more colours than normal. You might even
get less. What a good graphics pad does do is
to put all the computer's facilities at your
disposal in an easy-to-use way.

There are in fact several computer aided
design programs which do this in a very
similar fashion, but giving you keyboard

control rather than pad control. There is an
example of such a program in INPUT, on
pages 566 to 572 and 573 to 577. This gives
you a menu-driven choice of drawing com-
mands and other features—each of which can
be directed from the keyboard. Graphics pad
driver software is very similar, except that the
purpose-built pad can be programmed to be
far more user-friendly than a jack-of-all-
trades keyboard. To see why, it's easiest to
look at a graphics pad in operation.

USING A GRAPHICS PAD
Individual• pad computer combinations vary
in use for the obvious reasons mentioned
above. But they are all designed to work in a
way which mimics the natural action of
drawing or painting on a board. It is this,
more than anything else, which allows them
to score over other methods of creating a hi-
res image.

Before you can start to create your picture,
you first need to specify criteria such as which
drawing mode you want, or what colour, for
example. This, as with every other option
available, is typically displayed as a menu by
the program. Menu choices may be selected
by pressing buttons, or, with many systems,
by using the pad itself as a sort of 'artist's
palette'. In this case, the choices may be laid
out on screen so that you have, say, a row of
ink pots and a row of brush styles, plus
various other options. Selection of any of
these can be made by moving the stylus to
take a screen cursor to the right option, then
pressing a button to fix the choice.

Drawing on the pad can be done freehand,
using either your imagination or by tracing
over an existing picture which you can fix to
the pad. In this, as in other applications, the

primary job of the software is to interpret the
signals from the pad, and to tell the computer
that the incoming data refers to a point on the
screen. The shape you trace is then instantly
displayed.

Freehand drawing can be surprisingly dif-
ficult if you want, say, a straight line, as it is
easy to wander slightly. You can use drawing
aids like rulers, but with many types of pad
you need to be careful that these do not
trigger the pad instead of the stylus. By far the
easiest way to create regular constructions is
to use the pad's range of on-board geometric
shapes—which may include straight lines,
rectangles, circles, arcs, and possibly others,
too. These can be selected from the menu,
then the stylus is used to fix the position and
size of the shape by specifying start and finish
points.

At any point in the procedure, there is
usually the facility to erase a mistake,
although this is limited to the last operations
performed since returning to the menu, as the
computer can only hold the previous screen in
memory. Mistakes which are realized too late
for this sort of correction can sometimes be
erased by over-drawing in the background
colour, although this can be fiddly. In the last
resort, you can erase totally and start again.

Ink colour can be changed as necessary
when drawing, there is also the facility to fill
shapes with colour. This process is usually
referred to as 'draw and fill'. The outline is
drawn first, then the enclosed space is filled
by positioning the cursor within it and ma-
king the appropriate selection. Spaces not
completely enclosed by lines will tend to leak
colour everywhere else. In general, it is best to
complete all the outline drawing first, and
only then to do your colouring.

More specialized options vary far more
from pad to pad. Examples of these options
are the facility to mirror a shape or to copy an
image from one part of the screen onto
another part—so, for example, you could
create a whole forest by drawing just one tree,
mirroring it to get an alternative shape, then
copying it repeatedly.

There may also be an enlarging facility
with which you can take a section of the screen
and magnify it. If this is combined with a
plotting option, it gives you the chance to edit
the image literally pixel by pixel.

SAVEING THE IMAGE
When you have completed your picture, you
will want to keep it. The software ' also
controls the SAVEing of the designs, within the
limitations of the way in which your computer
SAVEs a screen. (The BBC and Spectrum, for
example, SAVE the screen as a whole, while the
Commodore 64 in 'multicolour' mode SAVEs
in three parts—screen positions, colour and
text.) You may be able to save more than one
screen within the program for instant recall,
but all systems allow you to SAVE pictures to
tape or disc. These can usually be recalled
into the program for later editing, or even so
that you can combine elements from different
pictures. Using this facility, some of the
software has an on-board set of stock images
that you can use for your own picture.

You can keep your masterpiece indefinitely
in storage, or load it into another program—a
title page for your new game, perhaps? If you
want a permanent record, you need access to a
colour plotter. Alternatively, you can photo-
graph the screen, being careful to exclude
extraneous light which may cause unwanted
reflections.

`Zoom' enables you to plot individual pixels Key elements of a picture can be repeated at will

Control codes can be used in place
of many BASIC keywords. You can
enter them directly from the
keyboard and they have the
advantage of acting immediately

The control codes are those little-used ASCII
codes below 32 and, on the Commodore, a
few above 190. These codes can be used for
such things as changing colour, moving the
cursor and so on. The Dragon and Tandy
don't use control codes as the ASCII codes
are used to produce the graphics symbols
instead.

There is one very good reason to use control
codes on the Spectrum, and that is to save
memory. The codes can be used in place of
PAPER, INK, BRIGHT and FLASH and can be
entered by pressing CAPS SHIFTI and
SYMBOL SHIFTI and then a number. These
numbers determine which command is actu-
ally used:

For PAPER, simply enter the correct colour
number from 1 to 7-2 for red for example.

For INK press I CAPS SHIFTI with the colour
number.

For BRIG HT on press 9, and for off press 8.
For FLASH on press (CAPS SHIFTI and 9 and

for off press (CAPS SHIFT' and 8.

Remember to press CAPS SHIFT and
SYMBOL SHIFT first each time.

You can see how much memory is saved in
a line such as:

10 PRINT PAPER 2;INK 6; "MENU"

The keywords PAPER and INK and the two
semi-colons each take one byte, and each
number takes six bytes. The control codes
take up only one byte for the pair of shift keys
and one for the number. This means a saving
of six bytes per command, and in a long
program using a lot of colour commands the
saving could be enormous.

The commands have to be entered inside
the quotes for them to work properly, so in
the last example first type:

10 PRINT "

then enter the control codes for PAPER 2 and
INK 6 as above, followed by the rest of the line.

The codes take up no space in the listing
but have an immediate effect, producing
coloured text in the listing as well as on the
screen.

In fact you can also use them simply to

highlight parts of a listing. In this case you
would put them outside any quote marks
unless you wanted the colours to appear on
the screen as well.

The Commodore computers use control
codes all the time as there are no alternative

keywords available in BASIC for such things
as changing colour, moving the cursor or
clearing the screen. The codes appear in
listings as graphics symbols or reversed out
characters—a reversed out L (MI) sign for

red, for example.
These characters are very confusing if you

are new to the Commodores, but all the
commands that are obtained with the CTRL
key are actually printed on the keys. For
example, the 3 key has the word RED printed
on the front so you know to press I CTRLI and 3

for red text.
There is a whole list of control codes and

their symbols, as these are used in the
INPUT listings, on page 421.

Control codes on the Acorn can be entered in
a variety of ways, either as VDU statements, as
PRINT CHR$, or directly from the keyboard
using the CTRL I key. The article on pages 319
to 320 showed how to use VDU and PRINT
CHR$, even in place of some keywords such as
COLOUR or MODE. You can produce exactly
the same effects with the CTRL key. The
numbers used are the same in all cases, al-
though when used with the CTRL key these
numbers have to be translated into letters-1
becomes A, 2 becomes B and so on. The
manual gives all the conversions. Direct entry
of the codes is useful as they act immedi-
ately, whether you are in the middle of typing
in a program line or running a commercial
program such as a wordprocessor.

Some examples are CTRL and B (or VDU2)
to turn on a printer, [CTRL and C to turn it off,
ICTRL I and U to delete a whole program line,
CTRL' and N to turn on paged mode, I CTRL and
0 to turn it off.

Use this multi-feature sprite
generator program to create special
sprite data files for use in your own
programs. Plus a look at the all-
important VIC registers

A sprite is an extremely versatile form of user-
defined graphic which gives the Commodore
64 tremendous potential in all forms of games
programming.

Though simple in theory, making full use
of this powerful facility requires quite a deep
knowledge of the workings of the VIC-II
chip, particularly of the thirty or so memory
locations which affect the physical shape,
colour and movement of the standard number
of eight sprites.

Many of the general points were discussed
earlier (see pages 168 to 172) together with a
detailed look at setting up sprites in a single
colour. This article shows how to create
multicolour sprites, and how to put sprite
definitions into action.

You'll also see how to create a number of
sprites for boats, sea creatures, a desert island,
and other 'characters' that will be used in a
later article as the basis of a complete ani-
mated scene—the kind of thing on which
many commercial games are based.

MULTICOLOUR SPRITES
Multicolour sprites can be defined in a similar
way to the single colour sprites covered
earlier. And as before, the utility program
which follows shortly enables you to work
them out easily on the screen.

Multicolour sprites can be made to use up
to three colours. You don't get something for
nothing—in the process you lose some horiz-
ontal resolution, as each pixel is double
normal width and two bits of the sprite
pattern are needed to define it. Twelve bit-
pairs are used to define each of the 21
horizontal lines of a multicolour sprite.

Each of these pairs can take one of four
forms: 00, 01, 10, or 11. Each form is used to
give specific information about the particular
double-width pixel it represents:

Bit pattern Effect
00 	The double-width pixel takes

the background colour and is

thus rendered invisible.
01 	Sets whatever colour is speci-

fied in register V + 37.
10 	Sets the 'unique' colour for

the multicolour sprite, and
displays the colour specified
in the sprite colour registers
V+39 to V+46.

11 	 This sets the colour specified
in register V + 38.

(See REGISTERS for an explanation of the
various locations referred to here.)

SPRITE GENERATOR
The following program can be used for
defining either multicolour or standard hi-res
sprites, storing them in special sprite data
files. Up to 64 can be defined for each file.
The file can be SAVEd to tape or disk when it is
filled in whole or in part. Any number of
separate sprite data files may be created—
make sure that each is given a unique name.

DEFINING MULTICOLOUR SPRITES
USING THE SPRITE GENERATOR
TEMPORARY AND PERMANENT

SPRITE STORAGE
DIRECT DATA ENTRY

BROWSING THROUGH YOUR
SPRITE 'BANK'

USING DATA FOR YOUR
OWN PROGRAMS

SPRITE CONTROL REGISTERS

This program creates a sprite storage area
which is read from and then written to during
the creation of each sprite. You have the
option to display any of 64 sprite designs, edit
it, or dump the relevant DATA values to the
screen or printer where they may be copied
for inclusion in your own programs.

The sprite data files are SAVEd as code from
locations 12288 to 16384 and may be called
directly by your own programs.

Note that some of the end lines contain
symbols which are the second letter of the
`shorthand' POKE, and look like p0 when the
display is toggled into lowercase mode (press
ISHIFTI AND KKI key simultaneously). The
shorthand method must be used to keep these
lines within the 80 character limit. Also note
that the symbols which appear in Lines 180
and 190 are obtained by pressing 'SHIFT plus
0, along with RE plus Y in the second line.
These lines define the sprite character grid.
Remaining symbols refer to 'quote mode'
colour changes and cursor controls.

10 POKE 51,255:POKE 52,47:POKE
55,255:POKE 56,47:CLR

20 POKE 53280,6:POKE 53281,6:
PRINT "0 L";TAB(12);"U ILJ
❑❑❑❑❑❑❑❑❑❑❑ ";

CHR$(8)
30 PRINT TAB(12);"ZISPRITE EDITORgy
40 CH =1:PRINT "gigmiggo DO YOU

WANT MULTI COLOUR SPRITES.":
INPUT"(Y/N)";A$

50 IF A$< >"Y" AND A$< >"N"
THEN 40

60 IF A$ ="Y" THEN CH =2: GOTO 90
70 INPUT "gg ENTER SPRITE COLOUR";

CL(1):IF CL(1) <0 OR CL(1)>15THEN 70
80 CL(2)=CL(1):CL(3)= CL(1):

GOTO 130
90 FOR Z=1 TO 3
100 PRINT "ggENTER SPRITE COLOUR";Z;
110 INPUT CL(Z):IF CL(Z) <0 OR CL(Z)>15

THEN 100
120 NEXT Z
130 INPUT "ggENTER BACKGROUND

The illustrations show the sprite gen-
erator in edit mode for (left) hires
sprites and (right) multicolour sprites

COLOUR";CL(4): POKE 650,128
140 IF CL(4) <0 OR CL(4) >15 THEN 130
150 IF CL(4)= 0 THEN POKE 53280,11: POKE

53281,11: GOTO 170
160 POKE 53280,0:POKE 53281,0
170 FOR Z=832 TO 894:POKE Z,0: NEXT Z
180 L =1155:X = 0:Y= 0:CC = 207:

DD = 24:G$ ="E":C(1) = 207:
C(2) = 207:C = 55427

190 IF CH=2 THEN G$=" ❑❑ ":
DD =12:C(2) = 247

200 A(1) = 128:A(2) = 64:A(3) = 32:
A(4) =16:A(5) = 8:A(6) = 4:
A(7) = 2:A(8) =1

210 V = 53248:POKE 2040,13: POKE
V + 21,1:POKE V,28:POKE V +1,197:POKE
V+ 28,0

220 POKE V+ 38,CL(1):POKE
V + 39,CL(2):POKE V+ 37,CL(3): IF
CH=2 THEN POKE V+28,1

230 POKE V+ 23,1:POKE V+29,1
240 PRINT"oggggggggigg

gg gg 	gg gg" : POKE
646,CL(4)

250 FOR Z=1 TO 6:PRINT
"E11111111111111111110":NEXTZ

260 FF$="":FOR Z=1 TO DD:
FF$= FF$+G$:NEXT

270 PRINT "EgiA pipmpipaipi
pi pi pi El gg7654321076543210
76543210g"

280 FOR Z=1 TO 21:PRINT
"PJPJPJPJPAIPJ111.11PJPJa
" ; :POKE 646,CL(4)

290 PRINT FF$;"•A";Z: NEXT Z:POKE
895,0

300 PRINT"Igla1EDIT MODE"
310 GET AS:FOR Z=0 TO CH-1: POKE

L+X+Y*40+Z,C(Z+1):NEXTZ
320 IF A$="E" THEN 1370
330 IF A$=CHR$(20) OR A$=" ❑ " THEN

AA$ =A$:A$ ="4": GOSUB
580:A$=AA$

340 IF A$="R" THEN POKE V + 21,0:RUN
350 IF A$="*" THEN 1220
360 IF A$=CHR$(134) THEN POKE V+23,1
370 IF A$=CHR$(133) THEN POKE V+29,1
380 IF A$=CHR$(136) THEN POKE V+23,0
390 IF A$=CHR$(135) THEN POKE V + 29,0
400 IF A$="11" THEN X= X — CH
410 IF A$=" ❑ " THEN Y=Y-1
420 IF A$ = "pi" OR A$=" ❑ " THEN

X=X+CH
430 IF(A$="g" OR A$=CHR$(13)) THEN

Y=Y +1
440 IF X<0 THEN X=24—CH
450 IF X > 24 — CH THEN X=0
460 IF Y<0 THEN Y=20
470 IF Y>20 THEN Y=0
480 IF A$=CHR$(13) THEN X=0
490 IF A$="1§1" THEN X =0:Y = 0
500 IF A$ = "V" THEN GOSUB 1080
510 CC = PEEK(L + X + Y .40)
520 IF A$="S" THEN GOSUB 770:

GOSUB 690:GOSUB770:GOTO 300
530 IF A$="C" THEN GOSUB 770:

GOSUB 780:GOSUB 770:GOTO 300
540 FOR Z=0 TO CH-1:POKE

L+X+Y'40+Z,32:NEXT Z
550 IF VAL(A$) > 0 AND VAL(A$) <4 THEN

GOSUB 580
560 IF A$="0" THEN FOR Z=832 TO

895: POKE Z,O:NEXT Z:GOTO 270
570 GOTO 310
580 XX = 832 +INT(X/8)+ (Y . 3):

PP= PEEK(XX):PE= PEEK(XX) AND
A(X— (INT(X/8)*8) +1)

590 PF=PEEK(XX) AND
A(X — (INT(X/8) .8) +2)

600 IF CH=2 THEN 640

610 IF A$< >"4" AND PE=0 THEN POKE
XX,PEEK(XX) +A(X— (INT
(X/8) . 8)+1)

620 IF A$="4" AND PE< > 0 THEN POKE
XX,PEEK(XX)—A(X— (INT
(X/8) .8)+1)

630 GOTO 680
640 IF PE=0 AND(A$="1"ORA$=

"2")THEN POKE XX,PEEK(XX) + A(X —
(INT(X/8)*8) + 1)

650 IF PE< >OAND(A$="4"ORA$=
"3")THEN POKEXX,PEEK(XX) — A(X —
(INT(X/8) . 8) + 1)

660 IF PF= 0 AND(A$="1"ORA$=
"3")THEN POKE XX,PEEK(XX) +A(X-
(INT(X/8) .8)+ 2)

670 IF PF< > OAND(A$ = "4"ORA$ =
"2")THEN POKEXX,PEEK(XX) — A(X —
(INT(X/8)`8) + 2)

680 FOR Z=0 TO CH-1:POKE C+X+
Y . 40 +Z,CL(VAL(A$)):NEXT Z: RETURN

690 GOSUB 770:NU =0:PRINT
ZISPRITE NO."

700 NU$=`"':INPUT "gigg0-63";
NU$:NU =VAL(NU$):1F NU <0
ORNU>63ORLEN(NU$)= 0 THEN 700

710 PRINT "gga 	POINTER:":
PRINT 192+ NU

720 PRINT "gga ❑ STARI ❑ AD:":
PRINT 12288 +NU .64

730 PRINT "ga
PRINT 12288+ NU*64+63

740 FOR Z=0 TO 63:POKE 12288+
NU`64 +Z,PEEK(832 +Z):NEXT Z

750 PRINT "gg> PRESS ❑ KEY":
PRINT "TOD CONTINUE":POKE 198,0:
WAIT 198,1:POKE 198,0

760 RETURN
770 PRINT"I§1";:FOR Z=1 TO 17:

PRINT" ❑❑❑❑❑❑❑❑❑❑❑ ":
NEXT Z:RETURN

780 NU$="":PR1NT "giaSPRITELI

No.":INPuriggigg0-63";
NU$

790 NU =VAL(NUC:IF NU <0 OR NU>63
OR LEN(NU$) = 0 THEN 780

800 PRINT "iggigggggg>
COPYING"

810 NU = 12288 + NU*64:PO = 832:
IF CH =2 THEN 870

820 TT=0:FOR Z1 =0 TO 20:FOR Z2=0 TO
2:FOR Z3=0 TO 7

830 XX= C+ (Z1•40)+ (Z2*8) + Z3
840 IF(PEEK(NU +TT)ANDA(Z3 +1))

< >OTHEN POKE XX,CL(2):GOTO 860
850 POKE XX,CL(4)
860 NEXT Z3:POKE 832 + TT,PEEK(NU +

TT):TT=TT+1:NEXT Z2,Z1:RETURN
870 TT=0:FOR Z1 =0 TO 20:FOR Z2=0 TO

2:FOR Z3=0 TO 7 STEP 2
880 XX = C + (Z1•40) + (Z2*8) +Z3
890 R1 = (PEEK(NU + TT)ANDA(Z3 + 1))
900 R2 = (PEEK(NU +TT)ANDA(Z3 + 2))
910 IF R1 < >0 AND R2< >0 THEN POKE

XX,CL(1):POKE XX+ 1,CL(1)
920 IF R1 < >0 AND R2=0 THEN POKE

XX,CL(2):POKE XX+ 1,CL(2)
930 IF R1 =0 AND R2 < > 0 THEN POKE

XX,CL(3):POKE XX+ 1,CL(3)
940 IF R1 =0 AND R2=0 THEN POKE

XX,CL(4):POKE XX + 1,CL(4)
950 NEXT Z3:POKE 832 + TT,PEEK(NU +

TT):TT=TT+1:NEXT Z2,Z1:RETURN
960 1$="":1NPUT "ra(P)RINTER OR

(S)CREEN";1$
970 IF 1$ < >"P" AND I$< >"S" THEN

960
980 IF 1$ ="P" THEN OPEN 4,4:CMD 4
990 PRINT "ggSPRITE DATA";LU:LN=

(192+ LU)*64:PRINT
1000 FOR Z= LN TO LN +62:PRINT LEFT$

(STR$(PEEK(Z))+" ❑❑ ❑ ",4);:
NEXT Z

1010 PRINT "PJO":PRINT "ggSPRITE
POINTER = ";192 + LU

1020 PRINT "ggSTARTDADDRESS
❑ =";LN

1030 PRINT "AgENDEIADDRESS
❑❑❑ =";LN+63

1040 IF 1$ ="S" THEN PRINT
"gg> PRESSEIANYEKEYEFOR
❑ EDIT CI MODE"

1050 IF 1$ ="S" THEN POKE 198,0:
WAIT 198,1:POKE 198,0

1060 IF 1$ = "P" THEN PRINT# 4:CLOSE 4
1070 GOTO 170
1080 PRINT1MaVIEWE MODE":

FOR Z=0 TO 63
1090 NU =12288 + Z*64
1100 PRINT"Egiggggigggggigggg

CIENIKEggggigOA
SPRITE ❑ ❑ ❑ CI

1110 POKE 2040,192+Z

1120 GET R$
1130 IF R$=CHR$(13) THEN 1210
1140 IF R$="B" THEN Z=Z-1:

IF Z< > —1 THEN 1090
1150 IF Z= —1 THEN Z=63:GOTO 1090
1160 IF R$="C" THEN NU =Z:

GOSUB 800: GOTO 1210
1170 IF R$=" ❑ " THEN 1200
1180 IF R$="D" THEN POKE V + 21,0:

LU =Z:GOTO 960
1190 GOTO 1120
1200 NEXT Z:GOTO 1080
1210 POKE 2040,13:GOSUB 770:

GOTO 300
1220 GOSUB 770:PRINT "I§ gg pnipi

DO II7YOU ❑ WANTEITOOSTORE171
SPRITE ❑ (Y/N)?' 5

1230 GET R$:IFR$="N" THEN 1270
1240 IF R$="Y" THEN 1260
1250 GOTO 1230
1260 PRINT"Ig gg";:FOR Z=1 TO 39:

PRINT "III";:NEXT Z:GOSUB 690
1270 POKE V + 21,0:POKE 53280,14:POKE

53281,6
1280 PRINT "El ODOOYOUEWANT

CI TO CI SAVED OR CI LOADE DATA CI
(S/L)?":S$ = "LOAD"

1290 GET F$:1F F$="S" THEN S$=
"SAVE":GOTO 1310

1300 IF F$< >"L" THEN 1290
1310 PRINT "El a";TAB(13);S$;

"D ROUTINE"
1320 1FF$="L"THENPRINT"ggLOAD"

CHR$(34)"SPR1TE CI FILE1111";
CHR$(34);",1,1":GOT01350

1330 PRINT "AgPr43,0:P1744,48:
PF45,0:PE46,64:";

1340 PRINT "SAVE";CHR$(34);"SPRITE
❑ FILEC11";CHR$(34);",1,1"

1350 PRINT"gggugggggggggaggi
guggP1743,1:PF44,8:P1745," ;
PEEK(45);":P ❑ 46,";PEEK(46);
":RUN"

1360 END
1370 POKE V+ 21,0:PRINT "0a

ENTER ❑ SPRITE ❑ NUMBER,
FOLLOWED ❑ BYO DATA"

1380 NU$=`"':INPUT "iggigg0-63";
NU$:NU =VAL(NU$):1FNU <OORNU >
63ORLEN(NUS)=OTHEN1370

1390 FOR Z=0 TO 63
1400 PRINT "0 DATA";Z;:X = 0:

INPUT X:IF X<0 OR
X > 255 THEN 1400

1410 POKE(192+NU)*64+Z,X:NEXT Z
1420 PRINT "ODOCYOUDWANTO

TO CI ENTERO MORE E
DATA ❑ (Y/N)?' 5

1430 GET A$:IF A$="N" THEN 170
1440 IF A$="Y" THEN 1370
1450 GOTO 1430

STARTING OFF
When you RUN the program, the first prompt
asks you if you want multicolour sprites. If
you respond with Y 'RETURN I for yes, the first
of three prompts requesting colour selection
appears. The colour value you enter can be in
the range 0 to 15, following the conventional
Commodore 64 scale starting with 0 as black.
Three colours can be selected—the fourth
colour chosen is for background colour.

If you press N and 'RETURN I, the hi-res
sprite mode is selected in which you get only
two colour prompts. Otherwise the remaining
routines are the same.

When you've selected your colours, the
screen displays the sprite generation grid, a
status or information panel on its left, and a
sprite display area a little lower down. The
grid has a resolution of 12 horizontal squares
in multicolour mode, 24 in hi-res.

EDITING
Once you've made your initial selection of
colours, the program automatically enters
`edit' mode and you can begin entering a
pattern within the grid. Use the cursor keys to
move around, and keys 1, 2 and 3 to colour a
square.

There are several other editing features.
Pressing 'RETURN I takes the cursor to the start
of the next line, ICLR/HOME on its own homes
the cursor, 'SHIFT plus ICLR/HOMEI clears the
screen, SPACE I clears the preceding square,
IINST/DELI clears squares under the cursor.

The sprite display area shows plotting or
erasing as it takes place, and at any stage
actually shows what the sprite looks like. You
can compare its form in normal and expanded
modes by making use of the function keys.
Pressing 111 expands the sprite horizontally,
GI vertically. la and Efil return the sprite to
normal size in X and Y axes respectively. The
program starts off with an expanded sprite.

If at any point during the edit mode you
feel that the choice of sprite type or colours
needs changing, press R to initiate a 'restart'.

SPRITE STORAGE
A newly defined or amended sprite can be
returned to storage from its temporary loc-
ation in the cassette buffer (locations 832
upwards are used) by pressing S at any time.

To amend an existing sprite, perhaps in the
course of using it as the basis of another sprite
design, press C. This puts the program into
`copy' mode. You are then prompted for a
sprite number. Any number between 0 and 63
is acceptable. The sprite you choose is then
copied from its relevant place in memory and
shown both on the grid and in the sprite

display area.
When you first use the program, all the

sprite memory locations contain garbage,
some of which makes for interesting sprites!
Try selecting a sprite number, 56, for
example, and see what you get.

The sprite that is displayed following the
copy mode can be worked on or returned to
memory, as it can at any future point, simply
by pressing S, the 'storage' key. You are then
again asked to enter a number in the range 0
to 63. If you want to overwrite the sprite that
you used as the starting point of the new
design, simply enter the same number that
you used to call it up. Otherwise, choose
another number, but note that the sprite
which originally occupied the storage location
you pick is overwritten in the process.

When the sprite is consigned to memory,
additional information is displayed to the left
of the grid. Details of that particular sprite
pointer, start address and finish address can
be noted for future use or printed out for a
hard copy (as explained below).

BROWSING
You can browse through what's in sprite
memory at any time during edit mode by

Each of these sprites can be entered
directly into the sprite generator
program using the data entry option.
The appropriate data is shown below
each illustration on these pages

pressing V for 'view'. The sprite on which you
were working remains in memory until
overwritten by a storage instruction.

The display starts at sprite 0 and can be
advanced very quickly through the entire
range, one sprite at a time, by pressing the
space bar. The ease with which this can be
done illustrates the power of simply altering
the sprite pointers. To go backwards one sprite
place, press B. If you want to use two similar
sprites as the basis of an animation, you can
store them in two adjacent locations and
toggle back and forwards between them in
this way to check the effect.

If you find a sprite you wish to revise, or
use as the basis of another one, use the copy
routine, key C. Otherwise press 'RETURN S to
enter edit mode again.

PRINT DATA
If you have a printer connected and switched
on, you can obtain a hard copy of the sprite
number, pointer, start and end addresses by
pressing D, for 'data', in view mode. You are
offered output to a screen or printer.

The data can then be transferred to other
programs by manual entry.

DATA ENTRY
Sprite definitions in the form of decimal,
DATA statements are frequently used in list-
ings and may also be entered directly into the
sprite generation program. Thus you could
use published DATA values as a basis for your

own designs. Some examples are shown in
this article—and you should transfer these to
memory using the procedure outlined in the
next paragraph.

When you are in edit mode, press E to make
a data `entry'. You are first prompted for the
sprite number you wish to assign to the new
design, then for the 64 separate items of data.
When you've completed the entry, you are
asked whether or not you wish to continue. If
not, the program returns you to edit mode
and a display of the last sprite entered, which
is also stored in memory.

SAVEING SPRITE DATA
The sprite data held in memory can be SAVEd
at any time. To do this, press * to exit the edit
mode. You are asked whether or not you want
to SAVE the last sprite you were working on.
This is a precautionary measure: press either
Y or N. You are returned to edit mode (where
you can use the store function) or asked
whether you want to SAVE or to LOAD. If you
select SAVE, the program presents you with a
screen showing preprinted direct commands.

To use the SAVE routine, simply move the
cursor up to the first of the two lines, enter a
suitable sprite file name and press 'RETURN I.
The line is actually set up for tape users: if you
wish to save the disk, alter the device number
in Line 1340 to 8. This is the second to last
number in that line. The alteration can, of
course, be made in direct mode.

To abort the SAVE option or return to the

program following a SAVE, simply run the
cursor down to the lower line and press
'RETURNS.

Note that the entire section of memory
between 12288 and 16384 is SAVEd, on the
assumption that data for all 64 sprites is
wanted. This may not, of course, be the case,
and you can SAVE a smaller section of memory
by adjusting the POKEd value in location 46. It
is best to make any amendment of this type in
direct mode to the first line of the save routine
display. All you have to do is simply change
the value 64 to whatever number of sprites
you want to SAVE.

LOADING SPRITE DATA
You can LOAD sprite data in any one of several
ways. From within the program, follow the
same routine for SAVEing up to the point
where the LOAD decision is made. The load-
ing routine screen is similar to that of the save
routine—simply run the cursor up to the first
line, enter the name of the sprite file you wish
to LOAD and press I RETURN I. You can change
the device number either in direct mode or
more lastingly (Line 1320) as before.

When the file has been LOADed, move the
cursor to the second of the preprinted direct
commands and press 'RETURN I. This returns
you to the program, with the new sprite data
in memory. Make sure that the original sprite
data has been SAVEd beforehand if it is
wanted, as this area of memory is overwritten
by the new information.

YOUR OWN PROGRAMS
The sprite file data can also be used by your
own programs. Use the same LOADing proce-
dure as before but follow this with a NEW.
Then LOAD your own program, which must
be smaller than 12k to avoid memory conflict
with the sprite storage area.

If you wish to use a sprite data file without
having to use the main sprite generation
program, type:

LOAD "SPRITE FILE NAME",1,1

Remember to use exactly the right name for
the sprite file, and to change the first number
from 1 to 8 if you're using a disk unit. The
sprite data is then LOADed into its original
location.

Once in memory, the sprite data must be
protected from subsequent program LOADs,
so enter this as a single direct command
sequence:

POKE 51,255: POKE 52,47: POKE 55,255:
POKE 56,47: CLR

You may find it better to make this the first
line of your program.

Your program of course has to access
specific parts of the storage area and this is
where hardcopy of the pointer and address
data is invaluable. You have to define the
colours again to match your original selection.
For a multicolour sprite, the values (0-15) of
the original colours c1, c2 and c3 are POKEd

into the following locations: (n is the sprite
number 0-i). V must first be set as 53248, the
start of the registers of the VIC-II chip (see
below).

POKE V + 38, c1
POKE V + 39 + n, c2
POKE V + 37, c3

For hi-res sprites only the single colour
location V + 39 + n is needed. But note that
the program must set up multicolour mode
first. This means that Bit 4 of location must
be set high—achieved by a solo POKE of 16 in
location V + 22.

REGISTERS
Much the hardest part of using sprites is
setting up all the various registers needed to
control their movement, colour, position and
priority.

The 47 registers of the VIC-II chip control
all of the functions to do with sprites. These
are listed in table form on page 172. Let's take
a closer look at some of these:

SPRITE POSITIONING
V+ 0 and V + 1 These two registers deter-
mine the X and Y coordinates of spite 0. Two
POKEs are needed to position a sprite:

POKE V + 0,horizontal pixel position
POKE V + 1,vertical pixel position

The pixel position can be in the range 0 to 320
horizontally, 0 to 200 vertically (but only 0 to

0 	0 	0 	0 	0 	128 0 	0 	16 	0 	0 	0 	0 	0 	72 	0 	0 	0 	0 	0 	0 	0 	0 	0 	64. 	0 	8 	16 	160 38 	18 	88 	81 	25 	5 	0 	84 	0 	5 	101
16 	0 	0 	0 	224 0 	248 240 1 	254 120 3 	191 62 	7 	254 63 	255 192 127 	80 	26 	222 164 96 	116 9 	0 	48 	0 	0 	48 	0 	0 	48 	0 	0 	48 	0 	0
255 255 127 255 255 241 255 254 192 255 252 0 	63 	240 0 	15 	128 0 	0 	0 	48 	0 	0 	60 	0 	0 	60 	0 	0 	60 	0 	0 	60 	0 	5 	125 64 	21 	85 	84
0 	0 	0 	0 	 85 	85 	85 	0
sprite pointer =197 	 sprite pointer =194
start address =12608 	 start address =12416
end address 	=12671 	 end address =12479

0 	0 	0 	0 	0 	0 	0 	8 	0 	0 	172 0 	0 	44 	0 	0 	9 	0 	0 	29 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0
0 	0 	93 	64 	0 	93 	64 	1 	29 	16 	1 	29 	4 	21 	93 	85 	0 	12 	0 	255 	0 	0 	0 	0 	0 	2 	0 	0 	2 	0 	0 	2 	128 0 	10 	128 2 	10 	128 2
255 255 233 85 	119 62 	170 183 63 	245 220 15 	255 252 3 	255 240 0 	0 	0 	138 160 10 	170 160 42 	170 160 42 	170 168 170 170 168 170 170 168 170 170 170
0 	0 	0 	0 	 170 170 170 0
sprite pointer =192 	 sprite pointer =199
start address =12288 	 start address 12736
end address =12351 	 end addrnnc 12755

160 horizontally in multicolour mode).
Each register can hold a maximum value of

255 when all bits are 'on'—so there's a very
obvious problem when it comes to position-
ing a sprite at a location towards the right
extreme of the screen.

There is a simple solution, however, and
this is provided by another location, V + 16,
which provides the MSB (most significant
bit) value on those occasions when it is
required for large X values, those above 255.

Each bit of this register looks after one of
the sprites: thus you would set bit 0 to 'on' for
sprite 0, bit 1 to 'on' for sprite 1, and so on.

Each is a high order bit which adds 255 to
the addressing. Thus POKE V + 16,1 followed
by POKE V + 0,10 would position sprite 0 at
location 265. To return to positions less than
255, location V + 16 has to be zeroed using
POKE V + 16,0.

If several sprites have to access the V + 16
bits, clearly some have to be set high while
others are low. POKEing V + 16 with values in
the range 1 to 255 can selectively turn on from
one to all of the sprites. Logical operators
AND and OR or NOT can also be used to
selectively control the bits in a situation like
this, particularly when it comes to switching
out the V + 16 effect.

SPRITE MOVEMENT
Because they control positioning, registers
V + 0 and V + 1 come into use for programm-

ing movement of sprite 0—all you have to do
is set up a suitable FOR ... NEXT loop to move
sprite 0 one horizontal or vertical position, at
a time. Another loop may be used to combine
movement in the other direction. Still another
loop may be used for controlling the speed of
movement, by introducing a delay in one or
other of the movement loops. V + 2 to V + 15
These are the X and Y registers for the
remaining seven sprites, which are treated in
exactly the same way as V + 0 and V + 1.

VIC CONTROL
V+ 17 and V + 22 These are the two VIC-II
chip control registers. Between them they
control the primary settings of the VIC
chip—things like the number of display
columns and rows, the colour mode in use,
and reset.

Each of these registers relies on bit control.
Bits 0, 1 and 2 of V + 17 regulate the number
of pixels for Y-axis (vertical) smooth scrol-
ling. Bit 3 sets the number of display rows—
set low results in 24, set high gives 25. Bit 4
gives a blank screen when set low—the screen
and border colour are matched. Bit 5 and Bit 6
give standard and extended bit-map modes,
respectively, when set high. Bit 7 is the high-
order bit value for V + 18 (see below), used
when values in excess of 255 are required
(something like the way the V + 16 bits are
used for sprite positioning).

The bits of control register two (V + 22)

exercise similar control. Bits 0, 1 and 2
designate the number of pixels for X-axis
(horizontal) smooth scrolling. Bit 3 sets 38
column width when set low, 40 columns when
set high. Bit 4 activates multicolour mode
when set high and allows text as well as bit-
mapped graphics. Bit 5 resets the VIC chip
when set high. Bits 6 and 7 remain unused.
V + 18 This is the location of the register
which, when read, contains the current po-
sition of the raster (a definition of which is the
set of scanning lines which appear as a patch
of light by which the TV image is produced).
When written to, a raster interrupt is triggered
when the raster value matches what's in the
register. This register is an important one if
more than the normal number of sprites are to
be displayed on the screen, a subject covered
in a later issue.

SPRITE ENABLE
V + 21 This the register which does all the
work of switching sprites both off and on.
Each bit controls one sprite, in the usual
order—Bit 0 for sprite 0, Bit 1 for sprite 1,
and soon. A sprite is enabled (switched on) by
setting the control bit high. By judicious use
of POKE values, and AND and OR or NOT
masking, very selective control can be
exercised over the switching process.

All sprites can be switched off by POKEing
zero into this location—do this towards the
end of a sprite display sequence.

0 	0 168 0 1 	101 0 15 103 192 23 103 80 39 103 96 39 103 96 39 103
0 0 160 0 0 144 0 0 144 0 0 64 0 0 80 0 0 84 0 0 	96 39 103 96 39 103 96 11 103 128 10 102 128 2 	170 0 0 168 0 0
88 0 255 251 255 255 251 255 63 251 252 15 254 240 0 2 	0 0 2 	128 	68 0 0 68 0 0 16 0 0 16 0 2 	222 0 2 	254 0 1 	169 0
0 0 0 0 	 0 84 0 0
sprite pointer = 201 	 sprite pointer =195
start address =12864 	 start address =12480
end address =12927 end address =12543

EXPANSION
V + 23 and V + 29 One of the special features
of sprites is their ability to expand instanta-
neously in vertical and/or horizontal planes to
four times their original size. These are the
two locations (X and Y respectively) which
handle this job.

Once again, each of the eight sprites is
controlled by the appropriate bit. Bit 0 in
V + 23 and V + 29 looks after the Y and X
expansion of sprite 0, Bit 1 does the same for
sprite 1 . .. and so on. Simply set the
appropriate bit(s) high, again using the logical
operators for selective control over the eight
separate sprites.

PRIORITY
V + 27 Some interesting effects are possible
by making sprites pass over one another, and
in front of or behind the background (such as
a text or ROM graphic character). The latter
function is controlled by this register.

Sprites take their priority from the sprite
number—the lower the number, the greater
the priority. Thus sprite 5 has greater priority
than sprite 7, and will pass over it (in front of
it) if both are displayed together and set for
path which in part takes them over the same
group of screen coordinates. Sprite 0 has
priority over all other sprites.

The sprite-background priority is estab-
lished for each sprite by standard bit control
of V + 27. These are normally set to zero (that

is, low or off) but can be set high using direct
POKE values. Selective control is again po-
ssible using the logical operators. Set high
(using POKE V + 27,4) Bit 3 would give the
background higher priority than sprite 3.

COLLISIONS
v+ 30 and V + 31 These two locations are
used to detect 'collisions' between sprite and
sprite or sprite and background, respectively.

Collision detection plays an immensely
important part in games programming but
has uses in other fields too if sprite overlapp-
ing needs to be detected. The contents of the
two registers remains zero until two or more
sprites collide or the registers are reset.

By PEEKing V + 30 it is possible to tell
which sprites have been in collision. If the
value returned is, for example, 129, this
correspond with the setting of Bits 7 and 0—
indicating that sprites 0 and 7 had collided.

In a similar fashion the bit value obtained
by PEEKing V + 31 reveals which sprite(s)
have collided with the background. Note that
the bits remain set even after they've been
read and must be cleared before any further
sequence of collisions has to be detected. Use
is also made of registers V + 25 and V + 26
where selective bits are set until read.

COLOURS
v+ 32 and V + 33 These are the two familiar
locations for changing border and screen

(background 0) colours—perhaps more easily
identifiable as locations 53280 and 53281
frequently used at the start of programs to
avoid the normal default light-blue/blue dis-
play colour combination.
V+ 34 to V+ 36 These are three other
locations for contolling background colours 1
to 3 and are used for multicolour character
generation where characters may be displayed
in one of four colours. The mode is specified
in V + 22 and the colour is taken from one of
these registers. Only the first four bits are
used as the colour values encompass the range
0 to 15 and no greater.
V + 37 and V + 38 These are the sprite
multicolour registers. They are used in con-
junction with V + 28, which is the register for
setting multicolour mode (again with one bit
looking after one sprite). To set a sprite to
multicolour mode you have to set the appro-
priate bits of V + 28, V + 17 and V + 22. Part
of the colour information for a multicolour
sprite comes from the screen colour location,
V + 39 to 46 (see below) and V + 37 and
V + 38. Each multicolour sprite can have its
own colour and two shared colours.
V + 39 to V + 46 These eight locations con-
tain the colour information for sprites 0 to 7.
In multicolour mode they provide the 'uni-
que' colour in any particular configuration.
Some examples of using these locations are
found actually within the sprite generator
program.

By now you should know enough
about machine code to understand
how the frame-print routine given in
part one of INPUT works, so here it
is disassembled

In INPUT'S article on machine code on
pages 8 to 15, Spectrum, Acorn and Dragon
and Tandy owners were told to enter some
DATA which would create a frame that could
then be used to create large, fast-moving
graphics characters or UDGs. It was, in fact,
a small machine code program. At that time
you were told to enter the figures and not to
worry about what they meant.

By now you do know a bit about machine
code though. And it is time that you did
understand what the numbers meant. So the
machine code has been disassembled to turn
the numbers back into assembly language
mnemonics. That way it will be easy to see
what is going on.

Commodore users do not need to worry
about this, because the Commodore program
used sprites to create the graphics characters
and so did not need a machine code routine.

a
org 65200 (org 32400 on 16K Spectrum)

jr start 	defb 0
mode defb 1 	defb 147
data defb 22 	defb 148

defb 0 	defb 149
defb 0 	defb 22
defb 32 	defb 0
defb 32 	defb 0
defb 32 	defb 150
defb 22 	defb 151
defb 0 	defb 152
defb 0 	defb 22
defb 32 	defb 0
defb 32 	defb 0
defb 32 	defb 153
defb 22 	defb 154
defb 0 	defb 155
defb 0 	defb 22
defb 32 	defb 0
defb 32 	defb 0
defb 32 	defb 156
defb 22 	defb 157
defb 0 	defb 158
defb 0 	defb 22
defb 144 	defb 0
defb 145 	defb 0
defb 146 	defb 159
defb 22 	defb 160
defb 0 	defb 161

PRINTING AND UNPRINTING
CALCULATING PRINT

POSITIONS
MOVING FROM UDG TO UDG

OPENING CHANNELS

REFERRING TO TABLES
MOVING POINTERS

COMMANDING THE CURSOR
SETTING UP COUNTERS

SCREEN PRINT ROUTINES

start Id a,(mode)
cp 1
Id bc,18
jr z,print
jr c,reset
sla c
jr print

reset Id c,0
print Id ix,data

add ix,bc
Id a,(23689)
Id b,a
Id a,24
sub b
Id (ix +1),a
inc a
Id (ix +7),a

inc a
Id (ix + 13),a
Id a,(23688)
Id b,a
Id a,33
sub b
Id (ix +2),a
Id (ix +8),a
Id (ix + 14),a
push ix
Id a,2
call $1601
pop de
Id bc,18
call $203C
ret

The first instruction jumps the processor over
the long data table which follows it, onto the
beginning of the program proper. You could,
of course, simply call the program at the first
instruction past the data table. But you will
find it easier to use the origin address if you
want to call the program.

The first byte of data—in fact, the one after
the mode label—tells the program which
frame to print. The BASIC POKES 0, 1 or 2
into this location. In this case, the 0 UDG is
an empty frame used to clear the screen and 1
and 2 are actually the UDGs—in the case of
the tank, they were the two tanks, one
pointing in one direction, the other in the
other. Here, if no frame number is specified,
the routine will default to 1.

THE UDG DATA
After the label data, comes the details of three
grids. The Spectrum prints its UDGs out in
the form of strings. But first it needs to be told
where to print them. The instructions for this
are contained in the string data too-22 is the
token for the BASIC AT and the two zeros are
empty bytes. The routine is going to fill them
in later with the print position.

The three sets of three 32s make up the
empty 9 x 9 frame. 32 is the ASCII code for a
space. Each set of three makes up one line of
the frame and must be prefaced with its own
AT and print position. This is frame 0.

Frame 1 is made up of UDGs 144 to 152.

Again, in data, these come in sets of three with
an AT and two free bytes for the print position
in front. And frame 2 is made up of UDGs
153 to 161.

WHICH UDG?
The Id a,(mode) loads the number POKEd into
the mode byte into the accumulator. And cp 1
compares it with 1.

The BC register pair are then loaded with
18. In fact, the 18 goes into the C register and
B is cleared. The only thing that counts
during the main routine is the value of the C
register, but it will need the B register clear
later, when ROM routines are called.

If the mode number loaded into the ac-
cumulator was 1, cp 1 would have set the zero
flag. So jr z,print jumps down to the routine
labelled print. There, the IX register is loaded
with the address of the first byte of the UDG
data and the contents of the BC register-
18—is added to it. Each frame contains
eighteen bytes of data—nine for UDGs, three
for the ATs and six for the print positions. So
this effectively steps the IX register over
frame 0 to the beginning of frame 1.

If the mode number was 0, though, cp 1
would set the carry flag. So jr c,reset jumps to
the reset label and loads C with 0. Then add
ix,bc adds to the address of the data label,
leaving the IX point at the beginning of the
empty frame.

If the mode number is neither 1 nor 0, it
must be 2. So the processor goes onto the
instruction sla c. This means shift left arith-
metic and acts on the C register. It's called an
arithmetic shift because, by shifting all the
bits one place to the left, it effectively multi-
plies the contents of the register by two.

In this case, it doubles the 18 to 36, then
jumps to the print label. Then when BC is
added to the IX pointer, it is shifted 36 bytes
along the data table to a position at the
beginning of frame 2.

THE PRINT POSITIONS
The system variable in 23,689 contains the
vertical print position. And the print position
specified by the BASIC program is that of the
top of the frame. Unfortunately, this system
variable counts from 1 at the bottom of the
screen to 24 at the top, rather than the other
way round as in BASIC. So it has to be
transferred into the B register, then 24 is
loaded into A and the value in B is subtracted
from it.

IX contains the address of the first byte of
the frame that the routine is going to print. So
Id (ix +1),a loads the vertical print position of
the top of the frame into the next byte down
the table—the first 0 that has been left empty.

A is then incremented to give the vertical
print position of the next line of UDGs down
the frame. This is loaded into the eighth byte
down the table by Id (ix + 7),a. Then A is
incremented again for the third line, and this
is loaded into the fourteenth byte.

This operation has loaded the vertical print
position into the empty bytes immediately
following the 22 AT token.

The horizontal print position is then
loaded into the accumulator from the system
variable 23,688. Again this works back to
front compared with BASIC. So it is loaded
into B, A is loaded with 33 and B is taken away
from A to give the horizontal print position
the right way round.

As each line starts at the same horizontal
position, it means that the same value of A can
be loaded into the other empty spaces in the
data table. The Id (ix + 2),a, Id (ix + 8),a and
Id (ix +14),a do that.

The IX pointer is then pushed onto the
stack to protect it against being corrupted by
the ROM routine that is about to be called.
Then A is loaded with 2 and the channel open
routine at 1,601 is called. The 2 in the
accumulator defines the channel to be used
when the processor goes into the subroutine.
Channel 1 is the edit line at the bottom of the
screen, channel 2 is the main screen and
channel 3 is the printer.

The IX pointer that was pushed on the
stack is now popped back into DE. Then BC
is loaded with 18 and the string printing
routine at 2,032 is called. This routine prints
BC characters, starting at DE. So it prints the
18 characters that make up the frame on the
screen starting from the base address that was
carried in the IX pointer.

That done, ret returns the processor to
BASIC.

CLC
LDA # &EO
DEX
BMI ZERO
BEQ ONE
DEX
BEQ TWO
ADC # &09

TWO ADC # &09
ONE LDX # &03
AGAIN LDY # &03
LINE JSR &FFEE

CLC
ADC # &01
DEY
BNE LINE
DEX
BEQ END

PHA
LDA # &OA
JSR &FFEE
LDA # &08
JSR &FFEE
JSR &FFEE
JSR &FFEE
P LA
JMP AGAIN

END 	RTS
ZERO 	LDA # &20

LDX # &03
NEXT 	LDY # &03

BACK 	JSR &FFEE
D EY
BNE BACK
DEX
BEQ END
LDA # &OA
JSR &FFEE
LDA # &08
JSR &FFEE
JSR &FFEE
JSR &FFEE
LDA # &20
JMP NEXT

The Acorn routine starts out by clearing the
carry flag. There are additions to be done.
Then the base address of the UDGs is loaded
into the accumulator.

If you look back at the BASIC you will see
that the number of the frame required is
stored in the resident integer variable X%.
This value is transferred into the X register
on going into a machine code routine.

DEX decrements the frame number. So if it
was 0, it now goes negative and sets the minus
flag. BMI ZERO jumps down to the ZERO
routine in that case.

THE ZERO ROUTINE
If the frame number was 0, the empty frame is
required. This is used to overprint the other
UDGs to unprint them when they are moved.
The first thing the ZERO routine does is load
the accumulator with &20, or 32 in decimal.
That is the ASCII for a space. The X and Y
are loaded with 3—the frame is 3 x 3.

The routine in &FFEE prints whatever is
in the accumulator on the screen. And the
PRINT TAB in the BASIC program puts the
cursor in the appropriate position.

DEY then decrements Y. If the result is not
zero, BNE BACK sends the processor back to
print another space in the character square—
the cursor automatically moves along one
space horizontally once it has printed.

So DEY sends the processor back round the
BACK loop three times. Then DEX decrements
the X register. When this is decremented to
zero—and the whole of the frame area has
been overprinted by space—BEG END bran-
ches back to the RTS instruction, which
returns the processor to BASIC.

When it is not equal to zero though, and
there is still some space printing to do, the
accumulator is loaded with &OA, or 10 in
decimal, which is a line feed. Then the screen
print routine at &FFEE is called. When this
happens it has the effect of dropping the
cursor down on line.

Then the accumulator is loaded with &08,
which is a backspace. And the screen print
routine is called three times to backspace the
cursor to the beginning of the next line of
UDGs.

That done, &20, the ASCII for a space, is
loaded back into the accumulator and JMP
NEXT takes the processor back to load the Y
register with 3 again, so that it is ready to
print the three characters in the next line of
the frame.

PRINTING UDGs
If the frame number is not 0, the processor
does not make the BMI branch. But if it was 1,
the DEX would have made it 0, the zero flag
would have been set and the BEQ ONE sends
the processor on to the label ONE.

If it's not zero, the X register is decremen-
ted again, so if the frame number was 2 to
start with, X now contains 0 and BEG TWO
branches the program down to the label TWO.
The ADC # &09 then adds 9 onto the base
address in A and continues. The frame is
3 x 3, so adding nine moves the pointer
carried in A along to the beginning of the next
UDG.

If the frame number was 3 to start with,
none of the tests above would have picked it

up so the processor would move onto the next
instruction. This is another ADC # &09, so 9
is added onto the base address twice, which
moves the pointer onto the third frame.

X and Y are both loaded with 3, exactly as
they were in the unprint routine. Then JSR
&FFEE calls the screen print subroutine which
prints the first UDG in the top left-hand
corner of the frame where the cursor has been
put by the BASIC program.

That done, the carry is cleared and 1 is
added to the pointer in the accumulator. This
moves it along to the next UDG in the frame.
Y is decremented to count along horizontally.

BNE LINE sends the processor back to print
the next UDG until Y is decremented to 0
and the end of the line has been reached. Then
X is decremented. If the result is not 0, PHA
pushes the pointer in the accumulator onto
the stack.

The cursor is then moved into the right
position to start the next line of UDGs by
screen printing a line feed and three back-
spaces. The pointer is pulled back off the
stack and JM P AGAIN takes the processor back
to load Y with 3 and starts printing the next
line of UDGs.

When X has counted down the three lines,
BEQ END branches to RTS, which returns the
processor to BASIC.

ORG 32000
LDX 32700
LDA # 3
STA FCNT
STA SCNT
LDA # 8
STA TCNT
LDA 32250
BEQ JUMP
LDU # 32300
DECA
LDB # 72
MUL
LEAU D,U

LOOP 	LDA ,U+
STA ,X
LEAX 32,X
DEC TCNT
BNE LOOP
LDA # 8
STA TCNT
LEAX —255,X
DEC FCNT
BNE LOOP
LDA # 3
STA FCNT
LEAX 253,X
DEC SCNT
BNE LOOP

RTS
JUMP CLRB
STLP 	STB ,X

LEAX 32,X
DEC TCNT
BNE STLP
LDA # 8
STA TCNT
LEAX — 255,X
DEC FCNT
BNE STLP
LDA # 3
STA FCNT
LEAX 253,X
DEC SCNT
BNE STLP
RTS

FCNT 	RMB 1
SCNT 	RMB 1
TCNT 	RMB 1

The screen address of the top left-hand corner
of the grid is POKEd into memory locations
32,700 and 32,701 by the BASIC program.
And LDX loads this two-byte pointer into the
16-bit X register. The number 3 is loaded into
the accumulator and stored in the two coun-
ters labelled FCNT and SCNT. The frame
contains 3 x 3 UDGs.

These counters appear in the data table at
the end of program. Here the space the
counter is going to occupy is reserved by the
instruction RMB—Reserve Memory Byte. The
number 1, following, tells it to reserve just
one memory byte. RM B 50 would reserve fifty
memory bytes.

The third counter, TCNT, is set to 8. Then
the contents of 32,250 are loaded into A. The
number of the UDG is POKEd into 32,250. If
the UDG's number is zero, BEQ JUMP sends
it off to the routine which clears that area of
the screen. Otherwise the processor goes on to
deal with the UDG itself.

PRINTING THE GRAPHIC
Memory location 32,300 is the start of the
UDG store. And the number 32,300 is loaded
into U so that you can work out where the
appropriate UDG begins. The required
UDG's number in the accumulator is
decremented—the first UDG starts at the
beginning of store, so its offset is O.

LDB #72 loads the B register with the
number 72, and MUL MULtiplies die contents
of A and B then puts the result in the D
register. The accumulators A and B are eight-
bit registers and D is a 16-bit register, so it
won't overflow. There are 72 bytes in each
graphic. Each UDG contains eight bytes and
there are nine UDGs in the frame-
9 x 8 = 72. So this operation works out the

offset required to find the beginning of the
appropriate UDG.

LEAU D,U loads U with the value of D plus
U—in other words, it counts along the table
until the beginning of the required UDG is
pointed to.

LDA ,U + loads the accumulator with the
contents of that memory location, then incre-
ments the U register ready to deal with the
next one. And STA ,X stores the byte of the
UDG picked up from the graphics table into
the memory location pointed to by X. The X
register, you'll recall, carries the screen loc-
ation of the top left-hand corner of the
graphic.

LEAX 32,X then adds 32 to the X register.
This moves the X pointer down the screen
one line—there are 32 character squares on
each line, remember. The TCNT counter is
then decremented. And if it is not zero the
BNE instruction following it loops back to deal
with the next byte of the UDG.

The initial value of TCNT was 8, so the loop
is executed eight times. It takes eight bytes,
one above the other, to form a UDG. So this
counter counts out the bytes that form the
entire UDG.

ADDING THE NEXT UDG
LDA # 8 and STA TCNT sets the TCNT counter
back to eight, ready to deal with the next
UDG. Then LEAX —255,X moves the X
pointer onto the beginning of the next block
to the right.

The X register contains the screen pointer,
remember. It has been incremented by 32
eight times to print out the first UDG-
32 x 8 = 256. But you want to move back to
the position one to the right of the screen
position of the start of the first UDG, so you
only have to wind the X pointer back 255.

The FCNT counter is decremented so that it
counts across the array of three UDGs side-
by-side. When the result of the decrementing
is not zero, the processor loops back to start
dealing with the first byte of the next UDG.
When the result is zero, the processor moves
on.

MOVING DOWN THE FRAME
The FCNT counter is then reset to 3 and the X
pointer is wound forward by 253. Remember
that the X pointer has already been wound
forward by 32, which took it to the screen
location directly beneath the UDG just
printed. Then it was wound back by 255 to
take it to the screen location immediately to
the right of the top of the last UDG.

If you draw a little grid showing the UDGs
and look at the relative positions of the screen
locations, you will see that after the X register

has been wound forward by 32—and points to
the screen location directly beneath the UDG
just printed—it is two spaces to the right of
where the first byte of the first UDG in the
second row should be. So at that point, 2
should be subtracted from the X pointer to
move it to the right position.

But 255 has already been subtracted by the
program, so if you add 253 you get back to the
right place.

The SCNT counter is decremented. This
one counts down the three lines of UDGs
which make up the whole graphic. And when

the result of the decrementing is not zero, the
BN E takes the processor back to deal with the
next line.

If the result is zero, though, the whole of
the graphic has been printed on the screen and
RTS takes the processor back to BASIC.

UNPRINTING ON THE SCREEN
When the number of the graphic to be printed
on the screen is zero, the routine clears the
area of the screen being addressed. Clearing
the screen is done in much the same way as
printing on it. Only the routine does not have

to look up the UDG table. It just has to print
the bit pattern for 0—in other words,
nothing—on the screen.

CLRB sets the B register to 0. The 0 is then
stored in the screen position pointed to by the
X register. The X register is then updated
repeatedly in exactly the same way as the print
routine to move it location by location across
the whole grid. Only this time the contents of
the B register-0--are stored in each location.
And again, when it has finished the RTS
returns it to BASIC again, ready to run the
rest of your program.

Although you program in BASIC, the
computer works in numbers. If you
know how numbers are stored, you
can save memory, and even get
more accuracy ...

If your computer performs a numeric calcul-
ation that has a very large or very small result,
you may see strange looking numbers on your
computer's TV screen. An example of the sort
of answer that may be PRINTed is 2.34E14.

What this means is that the number con-
sists of two parts—one giving the digits in the
number (the 2.34 in the example above) and
the other (the E14 in the example above)
telling the computer (and you) where the
decimal point should be.

The reason that you see numbers in this
form from time to time is because of the way
that numbers are stored in your computer;
there is a limit to the size of the numbers that
it PRINTS. The Spectrum, for example, can
only PRINT numbers of up to 8 digits: if your
number has more digits than this, the com-
puter splits it up into something which shows
the significant digits, plus something which
shows how big it is, and PRI NTS it in the form
shown above. 2.34E14 actually means
234000000000000—too large to PRINT out.

You can also use the 'E' form yourself as a
shorthand when you enter numbers in a
program. This program will help you to
understand how this form of numbers (often
called 'exponent') works, and how the E value
is calculated.

10 CLS . : POKE 23658,8
20 INPUT "INPUT NUMBER", LINE A$
25 IF A$="" THEN GOTO 20
30 LET N$="0": LET E= 0: LET N =VAL A$
40 IF N =0 THEN PRINT "VALUE TOO

SMALL": PAUSE 50: GOTO 10
50 LET F=0: FOR M=1 TO LEN A$: IF

A$(M)="E" THEN LET F=M
55 NEXT M: IF F=0 THEN GOTO 200
60 LET N$=STR$ N: LET F=0: FOR M=1

TO LEN N$: IF N$(M)="E" THEN LET
F=M

65 NEXT M: IF F=0 THEN GOTO 180
68 LET N$=N$ (TO F-1)
70 IF ABS N <1 THEN GOTO 130
80 IF ABS N <10 THEN GOTO 110
90 LET N = N/10: LET F=0: FOR M=1 TO

LEN N$: IF N$(M)="." THEN LET F=M
92 NEXT M: IF F = LEN N$ THEN LET

N$=N$ (TO LEN N$ —1): GOTO 100

95 IF F< >0 THEN LET N$=N$ (TO
F-1)+NCF+1)+"."+NCF+2 TO):
GOTO 80

100 LET N$=N$+"0": GOTO 80
110 IF N$(LEN N$)="." THEN LET N$=N$

(TO LEN N$ —1)

120 GOTO 180
130 IF ABS N > =1 THEN GOTO 170
140 LET N = N*10: LET F=0: FOR M=1 TO

LEN N$: IF N$(M)="." THEN LET F=M
145 NEXT M: IF F=1 THEN LET

N$=".0"+N$(2 TO): GOTO 130

EXPONENTS
HOW COMPUTERS STORE

NUMBERS
A FLOATING POINT

NEGATIVE NUMBERS

PEEKING YOUR COMPUTER'S
MEMORY

TIPS TO SAVE MEMORY
NUMBER FORMATTING ON ACORN
DRAGON AND TANDY COMPUTERS

150 IF F< >0 THEN LET N$=N$(TO
F-2)+"."+N$(F-1)+N$(F+1 TO):
GOTO 130

160 LET N$ ="." + N$: GOTO 130
170 IF VAL A$<0 THEN LET

N$="-"+N$

180 PRINT : PRINT A$;"111 EQUALS": PRINT
N$

190 GOTO 20
200 IF ABS N <1 THEN GOTO 220
210 IF ABS N> =10 THEN LET E=E+1:

LET N = N/10: GOTO 210
215 GOTO 230
220 IF ABS N< =1 THEN LET E= E -1: LET

N = N*10: GOTO 220
230 PRINT A$;"0 EQUALS": PRINT N;: IF

E< >0 THEN PRINT "E";E
240 PRINT : GOTO 20

10 PRINT "p"
20 INPUT "gIINPUT NUMBER"; A$:PRINT
30 N$="0":E= 0:N = VAL(A$)
40 IF N=0 THEN PRINT "VALUE TOO

SMALLW:GOTO 20
50 FOR F=1 TO LEN(A$):IF

M1D$(A$,F,1)="E" THEN 54
52 NEXT F:F=0
54 IF F=0 THEN 200
60 N$=RIGHT$(STR$(N),

LEN(STR$(N)) -1)
62 FOR F=1 TO LEN(N$):IF

M1D$(N$,F,1)="E" THEN 66
64 NEXT F:F=0
66 IF F=0 THEN 180
68 N$= M1D$(N$,2,F -2)
70 IF ABS(N) <1 THEN 130
80 IF ABS(N) <10 THEN 110
90 N =N/10
92 FOR F=1 TO LEN(N$):IF

M1D$(A$,F,1)="." THEN 96
94 NEXT F:F=0
96 IF F=LEN(N$) THEN N$=LEFT$

(N$,LEN(N$)-1):GOTO 100
98 IF F< >0 THEN N$= LEFT$(N$,

F -1) + M1D$(N$,F +1) + "." +
M1D$(N$,F +2):GOTO 80

100 NS= NS+ "0":GOTO 80
110 IF R1GHT$(N$,1)=" " THEN

N$ = LEFT$(N$,LEN(N$) -1)
120 GOTO 180
130 IF ABS(N) > =1 THEN 170
140 N=N*10
142 FOR F=1 TO LEN(N$):IF

MID$(N$,F,1)="." THEN 146
144 NEXT F:F= 0
146 IF F=1 THEN N$=".0"+MID$

(N$,2):GOTO 130
150 IF F< >0 THEN N$=LEFT$(N$,

F - 2) + "." + M1D$(N$,F - 1,1) +
M1D$(N$,F +1):GOTO 130

160 N$="."+N$:GOTO 130
170 IF VAL(A$) <0 THEN N$="-"+N$
180 PRINT "0";A$;"PIEQUALS":

PRINT N$
190 GOTO 20
200 IF ABS(N) <1 THEN 220
210 IF ABS(N)> =10 THEN E= E+1:

N=N/10:GOTO 210
215 GOTO 230
220 IF ABS(N) < =1 THEN E= E -1:

N=N*10:GOTO 220
230 PRINT "011";A$;"PJEQUALS":

PRINT N;11";:IF E< >0 THEN PRINT
"E";E

240 PRINT:GOTO 20

10 INPUT A$
20 P=1NSTR(A$,"E")
30 A$=STR$(EVAL(A$))
40 @%=(LEN(A$)+(INSTR(A$,

".") < >0)- (LEN(A$) =1))
*256+ &1000A

50 IF P ❑ AND 1NSTR(A$,"E")= 0 THEN
@%=10:GOTO 70

60 IF P ❑ THEN PROCNORM:GOTO 10
70 PRINT;EVAL(A$)
80 GOTO 10
90 DEF PROCNORM
100 IF INSTR(A$,".") THEN

A$ = LEFT$(A$,1) + RIGHT$
(A$,LEN(A$) - 2)

110 P=INSTR(A$,"E")
120 E=EVAL(R1GHT$(A$,LEN (A$)- P))
130 A$= LEFT$(A$,P -1)
140 IF E<0 THEN 180
150 E= E- LEN(A$) + 1
160 A$=A$+STRINGS(E,`,`0")
170 GOTO 190
180 A$ = "O." + STRINGS(- E -1,

"0")+A$
190 PRINTA$
200 ENDPROC

10 CLS
20 PRINT:INPUT" INPUT NUMBER E";A$

30 N$ = "0":E = 0:N = VAL(A$)
40 IF N = 0 THEN PRINT" VALUE TOO

SMALL ":PRINT:GOT020
50 F =1NSTR(A$,"E"):IF F = 0 THEN200
60 N$ = STR$(N):F = 1NSTR(N$,"E"):

IFF = 0 THEN 180 ELSEN$=
MID$(N$,2,F — 2)

70 IF ABS(N) <1 THEN 130
80 IF ABS(N) <10 THEN 110
90 N = N/10:F = INSTR(N$,"."):

IF F = LEN(N$) THEN N$= LEFT$
(N$,LEN(N$) —1) ELSE IFF < > 0
THENN$= LEFT$(N$,F —1) +
M1D$(N$,F +1,1) +"."+
M1D$(N$,F + 2):GOT080

100 N$ = N$ + "0":GOT080
110 1FRIGHT$(N$,1)="." THEN

N$ = LEFT$(N$,LEN(N$) —1)
120 G0T0180
130 IF ABS(N)> =1 THEN 170
140 N = N*10:F =1NSTR(N$,"."):

IFF =1 THENN$=".0"+ M1D$
(N$,2):GOT0130

150 IF F< >0 THENN$ = LEFT$(N$,
F — 2) +"." + M1D$(N$,F —1,1) +
M1D$(N$,F +1):GOT0130

160 N$="."+ N$:GOT0130
170 IF VAL(A$) <0 THENN$= " —" + N$
180 PR 1 NT: PR 1 NTA$;" L.] EQUALS":

PRINTN$
190 GOT020
200 IF ABS(N) <1 THEN 220
210 IF ABS(N)> =10 THEN E= E+1:

N = N/10:GOT0210 ELSE 230
220 IF ABS(N)< =1 THEN E = E —1:

N = N*10:GOT0220
230 PR1NTA$;" ❑ EQUALS":PR I NTN;

CHR$(8);:IF E< >0 THEN
PRINT"E";E

240 GOTO 20

When you RUN these programs, the computer
waits for you to ENTER a number. You should
type in a positive number (or negative on
Dragon and Tandy) in either normal form, or
an exponent number—don't worry if you still
do not know what an exponent number is,
you soon will. The computer then PRINTS
your number in the opposite form. The Acorn
and Dragon have commands you can use to

change the format in which the computers
PRINT the numbers. These are explained later
in this article.

To convert a number written as an expo-
nent to one which is more meaningful to you,
you need simply to multiply the digits part of
the number (known as the 'mantissa') by 10 to
the power of the number after the letter E.
The number after the letter E, is known as the
`exponent' of the number.

Although this sounds quite complicated, if
you work through it step by step, it soon
becomes clear. Take the number 1.23E4.

To convert it to the usual form, multiply
the mantissa (1.23), by 10 to the power of
the exponent—which gives the sum
1.23*10,000. So the exponent number
1.23E4 becomes 12,300 in normal form.

You can experiment with converting num-
bers like this, using the programs above to
check your answers. Notice that for any
number, the mantissa always takes a value
with one digit before the decimal point, so it
varies between 1.0 and 9.99999 ...

Negative numbers are very similar: instead
of having a positive number as the mantissa of
the exponent number, you have a negative
value. (You should note that putting a minus
sign after the E part has a very different effect;
try this with the programs above to see what
happens.)

NUMBER STORAGE
While knowing about exponent numbers like
this may be interesting, it is also useful as it
shows the way in which computers (at least,
all the computers covered here and most
others, too) store numbers.

When you type in a simple direct command
like PRINT 10.'10, the computer actually deals
with it in rather more detail: it translates the
numbers into a type of exponent (called
`floating point') format, and calculates them
in this form.

There is also another complication in the
way that most computers store numbers. As
you have already seen from creating UDGs in
BASIC programming, and from machine
code programming, the computers store each
number in binary, or base two.

To show how numbers are stored in your
computer's RAM, follow this example of a
calculation based on the number 10.

The first step is to convert it into binary—
which gives the number 00001010.00000 .

The first four zeros of this binary number
mean nothing at all, and could quite easily be
missed out: which leaves the binary number
1010.00000 .

As you saw earlier in this article, a decimal
exponent number consists of a number be-
tween 1.0 and 9.999999... when a floating
point number is stored in your computer's
memory, the mantissa consists of a binary
number which always starts .1.

This is possible because the size of the
exponent part of the number determines the
position of a 'binary point' (the binary
equivalent of a decimal point). As it is
automatically defined, the mantissa does not
need to specify where the point is.

So there is a problem: how do you set the
exponent to show where the binary point
should be, and how do you convert the binary
number so that it starts .1?

MOVING THE POINT
In fact, the answer to both problems is the
same. All you do is move the point until it is
just in front of the first 1, and for every place
that you move the point, you add one to the
exponent. For example, with the number 58
(decimal) or 111010.000 (binary), the binary
point is gradually moved to the left, until
there are no numbers to the left of it, or only
zeros. In this case you have to move the
binary point 6 places to the left—so the
exponent is +6 and the mantissa is
.11101000 ...

In fact, the exponent starts off as 128, for
reasons which you will discover later in this
article, and so you actually add the number to
this. Therefore, the exponent in the example
above, for the number 58 is 128 + 6, or 134
(and, of course, the computer stores this as a
binary number).

To recap, the computer stores the exponent
part of your number in one byte, and it also
stores the mantissa part of your number. In
fact, the mantissa part always takes up four

bytes, and so in the example above, three of
these bytes would be filled with zeros.

Any floating point number thus takes up a
total of five bytes. This limits the size of the
maximum number that the computer can
store. The single byte of the exponent gives it
a maximum possible value of 2 to the power of
127—it would be to the power of 256, except
that the first bit is used as a sign bit (to tell
whether the exponent is positive or negative)
leaving only seven bits for the exponent.

And the maximum possible number for the
mantissa is .11111 etc, where every bit is set to
1. This is very close to 1.0000 etc, which is 1
in either binary or decimal. The smallest
possible number is .1000 etc, when all but the
first bit is 0. (The first bit has to be one
because the binary point is moved until it
reaches the first one in the number.) And .1 in
binary is i in decimal.

By multiplying the two parts of the num-
ber, you can find the maximum possible
number that the computer can store in float-
ing point form—this is 1.70141E38. You can
use the programs later on in this article to
check how your computer stores this number.

Unlike the other computers, the Spectrum
actually needs six bytes to store floating point
numbers. Five of these are identical to those
on other machines. The sixth is necessary
because the computer needs to be told to
expect a floating point number. This is done
by preceding each one by a number—decimal
14—which also takes up one byte.

SPECIAL CASES
You now have a good idea of how the
computer stores a number in floating point
form. But there are two variations on this.

The first comes when your initial number
is less than one. When this is the case, moving

the point to the left actually makes it further
away from where you want it to be! So you
simply move it to the right instead. Also, so
that the computer knows where the point
should be in the final number, subtract one
from the exponent every time you move the
point, instead of adding one. The exponent
starts, as with numbers greater than one, at
128.

Often, when you write a binary number,
the decimal equivalents of each 'column' of
the binary number are written at the top. You
have seen this before (for example in UDGs)
for the numbers to the left of the point, but
not for those to the right of the point. Those
to the right are actually fractions, which
might at first seem a bit strange, but this is
perfectly logical.

In binary, to find the decimal value of the
next column on the left, you multiply by
two—so 1 becomes 2, 2 becomes 4, and 4 8,
and so on. Working from left to right,
therefore, you do the opposite—divide by 2.
And 1 divided by 2 is a half, half divided by
two is a quarter, and so on.

The second variation with floating point
numbers is when the whole number is less
than 0, in other words, it becomes negative.
When this happens, the computer must be
able to store its own version of a minus sign
somehow—and it manages to do this without
using up any more memory space.

You saw earlier that, because of the way the
numbers are stored, the first bit of the first
byte of the mantissa of your number must
always be 1. Knowing this, the computer
assumes it to be the case and actually uses this
bit to tell whether the number is positive or
negative. Simply, if the number is negative,
this bit is set to 1; and if it is positive then the
bit is set to 0.

WHERE'S THAT NUMBER?
With the examples you saw earlier in mind,
you are now in a position to be able to know
how the computer stores your numbers.

The decimal number 58 (111010 in binary)
is stored as the following 5 bytes:

134 104 0 0 0

and the number 10 is held in these bytes

132 32 0 0 0

Try some experiments, working out the deci-
mal values of the bytes that the computer
stores for your numbers. You can test your
answers by typing in and RUNning this
program. Just type RUN 100 to use the second
(or GOTO 100 on the Acorns).

While the Spectrum stores numbers in the
general way described above, it is just one of
two ways that the computer actually uses to
store numbers. If you use a whole number
between — 65535 and + 65535, the Spec-
trum stores it in a different form—simply, the
binary equivalent—and in just two bytes.
Although this would appear to save memory,
unfortunately, the Spectrum also uses three
empty bytes, so that the whole number takes
up the same amount of memory as the floating
point number.

For this reason, when you use the first of
the two programs below, you should not enter
integers between —65535 and + 65535. If
you do, the program will still work, but the
results will not correspond with the explan-
ation above.

a
10 BORDER 1: PAPER 7: INK 9: CLS
20 INPUT "Enter a number (not an integer)",x

40 PRINT "'Exponent: E";PEEK (PEEK
23627+256'PEEK 23628+1)

50 PRINT "`Mantissa:";: FOR n=2 TO 5
60 PRINT TAB 10;PEEK (PEEK

23627 + 256*PEEK 23628+n)
70 NEXT n
80 STOP

FAX
10 PRINT "0":CLR
20 PRINT "ENTER A NUMBER":

INPUT X
30 V= PEEK(45) + PEEK(46)*256
40 PRINT "EXPONENT:";PEEK(V + 2)
50 PRINT "MANTISSA:";:FOR N=3 TO 6
60 PRINT TAB(10);PEEK(V+ N)
70 NEXT N
80 END

1E1
10 @% = 10
20 REPEAT
30 INPUT""ENTER A NUMBER",A
40 PRINT"`THESE NUMBERS MAKE

UP0";A"'
50 PRINT"EXPONENT ❑ ❑ ❑ ❑ ❑ ❑ 0";

?(LOMEM +3)""MANTISSA";
60 FOR T= LOMEM +4 TO LOMEM +7:

PRINTTAB(15);?T:NEXT
70 UNTIL 0

13_gin
10 CLS
20 INPUT" ❑ INPUT ❑ A ❑ NUMBER ❑ ";N
30 D=VARPTR(N)
40 PRINT:PRINT" ❑ EXPONENT

❑ =0",PEEK(D)
50 PRINT" ❑ MANTISSA ❑ = 0";
60 FORG = 1T04
70 PRINT,PEEK(D +G)
80 NEXT
90 PRINT:GOT020

a
100 REM SECOND PROGRAM
110 BORDER 1: PAPER 7: INK 9: CLS : LET

r=0
120 INPUT AT 1,0;"Enter exponent",exp
130 IF exp <0 OR exp > 255 THEN GOTO 120
140 PRINT "`Exponent:0";exp: POKE PEEK

23627 + 256 . PEEK 23628 +1,exp
150 PRINT "`Mantissa:";: FOR n=2 TO 5
160 INPUT AT 1,0;"Enter mantissa", man
170 IF man <0 OR man >255 THEN GOT0160
180 PRINT TAB 10;man: POKE PEEK

23627+256'PEEK 23628+ n,man
190 NEXT n
200 PRINT "'Result= ❑ ";r

100 REM SECOND PROGRAM

110 PRINT "0":CLR:R =1:
V= PEEK(45) + PEEK(46)*256

120 INPUT "ENTER EXPONENT";EX
130 IF EX<0 OR EX>255 THEN 120
140 POKE V +2,EX
150 FOR N =3 TO 6
160 INPUT "ENTER MANTISSA";MAN
170 IF MAN <0 OR MAN >255 THEN 160
180 POKE V+ N,MAN
190 NEXT N
200 PRINT "RESULT = ";R

100 REM SECOND PROGRAM
110 A=0
120 REPEAT
130 INPUT""EXPONENT ❑ ",?(LOMEM+3)'
140 FOR T=4 TO 7
150 PRINT"MANTISSA BYTE ❑ ";T — 3;:

INPUT?(T + LOMEM)
160 NEXT
170 PRINT"`TH ESE BYTES MAKE 0 ";A
180 UNTILO

100 REM SECOND PROGRAM
110 CLS
120 N=1:D=VARPTR(N)
130 INPUT"0 INPUT EXPONENT ❑ ";E
140 POKED,(255ANDE)
150 PRINT"0 INPUT MANTISSA ❑ ";
160 FORK = 1T04
170 INPUT E
180 POKED + K,(255ANDE)
190 PRINT,;
200 NEXT

210 PRINT:PRINT"0 NUMBER IS ❑ "; N:PRINT
220 GOTO 130

The first of these two programs lets you
INPUT a number, and then the computer
PRINTs the decimal values of the five bytes
that are used to store the number that you
enter.

The second lets you enter five bytes, and
the computer then PRINTs out the decimal
number that they represent (some of the
answers to this may be in exponent form).

SAVING MEMORY
Knowing how the computers store numbers,
in five bytes, you will realise that it is often
very wasteful on memory since for numbers
which do not need all four bytes of the
mantissa, the bytes could be saved and per-
haps used for something else.

In fact, you can save a significant amount
of memory by avoiding the use of numbers
altogether, but, of course, this is not always
possible. There is also, however, a way to
reduce the amount of memory that each
number takes up.

You can avoid using numbers in many
cases by setting up a variable as being equal to
the value you want to use. Of course, you need
to use the number itself when you define the
variable, and the variable itself will also take
several bytes to store—so if you are only going
to use the number once or twice then it is
probably not worthwhile.

Once you have set up a variable, though,
whenever you use it instead of a number, you

need just one byte for every character of the
variable. Remember that if you use a variable
with a long name, you are unlikely to save
much memory, but if you use just one letter
for the variable name, you are likely to save
quite a lot.

Some numbers, especially 1 and 0, both
crop up so often in almost all programs that it
is generally good programming practice to use
a variable for them.

This method is especially useful on the
Spectrum computer, because it uses six bytes
for every floating point number instead of the
five that the other computers take.

ODD EFFECTS
When you understand how the computer
stores numbers, you can also find out why
some strange occurrences seem to happen.
Try these short examples for your machine.
The reasons behind them are explained later.

First, try this Line:

PRINT 10.0000000001

You can see that the computer chops off the
last digit, the 1, and converts your number to
just 10.

This may be a problem when you want
high accuracy, but you can use this to your
advantage with the program above which
PRINTed out the 5 bytes in which your
number is stored. This did not permit you to
see the flashing point version of values be-
tween — 65535 and + 65535 because the
Spectrum stores these in a different way. But,
if you enter a string of 0's after a decimal
point, followed by a 1, the computer stores

Some programs use VAL and a
number in quotes instead of a
normal number. Why is this?
This form is sometimes used to try to
save memory space. This is because the
computer uses about seven bytes of
memory to store most numbers, which
can be wasteful. If you put long
numbers in a string, and use the
function VAL to evaluate it, this
effectively makes the string a number,
and uses less memory—just one byte
for each digit, one for each quote
sign, and one for
the VAL function.

your number in full floating point form.
So, suppose you wanted to find what 5

bytes make up the decimal number 10 in the
computer's memory. If you enter 10 to the
program, the results will not show you the
floating point bytes which make up 10. But
you can get these if you enter
10.0000000001, which the computer does
store as a floating point number. And because
it chops off the last digit, this number is also
the same as 10 to the computer—so you could
then get the bytes which combine to form 10.

Now try entering this line:

PR INT INT —65536

This in fact exposes a weakness of the
Spectrum's ROM, which does not differenti-
ate between this value and —1.

Try this direct command on your computer:

T=0: FOR P=0 TO 100000: T=T+
0.0000001: PRINT T: NEXT

If you now press I R ETURN b and watch the left
hand columns of numbers rush up the screen,
you should be able to spot the error. What in
fact happens is that the seventh digit after the
decimal point grows by 1 every time that the
loop is executed—and, every now and then, so
does the eighth digit—for no apparent reason.

'WU
You can see the strange effects on the Dragon
and Tandy by entering these two numbers
into the program above (the first of the
article):

12345678901 E — 4

and:

454545454 E — 46

The first number's discrepancy is quite obvi-
ous, and the second number's last digit is
actually changed by the computer.

a IKE IKKI 	NCI 11
These inaccuracies are not, as some people
think, bugs in the computer's ROM, except
for the second Spectrum example. The reason
why the 1's appear or disappear, seemingly at
random, is that the computers will work to a
limited degree of accuracy—and so for num-
bers with more than a certain number of
digits, the computers have to round up.

When this happens, depending upon what
the numbers are, and upon how many calcul-
ations the computer subsequently does with
the rounded up values, the results can be
wrong—as the program examples show.

Of course, most of the time the computers
are quite accurate enough, and these 'errors'
do not happen. But, for more serious applic-
ations, such as accounts programs, the
inaccuracies might be a problem, so the better
software packages take this into account.

By using arrays, you can store numbers
with more significant figures than the max-
imum of nine that each of the computers
covered here allows. The main advantage
with this is that you can then write in a routine
to PRINT the number in its normal form, and
not as an exponent, which the computer
would do. In this way you can also get round
the problem of error messages such as 'num-
ber too large'.

NUMBER FORMATTING
Earlier, it was explained that the Acorn,
Dragon and Tandy have commands which
you can use to change the PRI NTing format for
numbers.

The Acorn computers let you change the
format of PRINTed numbers. One of the
aspects you can change is 'field width'. To see
the effect of the field width, enter the follow-
ing lines:

PR I NT 1,2,3,4,5,6,7,8,9
PRINT 123456789

The first line PR INTs each figure separately,
whereas the second line PRINTS all the figures
as one number. By separating each figure or
number with a comma, you can PRINT
columns of data, but you need not stick to the
width you're given when the computer is
switched on. There is a special variable called
@% which can alter the display. It can be set
to change the width of the print fields to any
number of columns you like, and it can also
alter how numbers are PRINTed out.

One useful setting is @%= &2020A (don't
worry, the numbers are explained below)
which makes sure that all numbers PRINTed
out have two figures after a decimal point.
This is ideal for amounts of money or any
metric weights and measures.

WHAT THE NUMBERS MEAN
When the computer is first switched on, @%
equals &90A or, to write it out in full,
@% = &0000090A. Note the & sign; this
indicates that the number is in hexadecimal.
It is best to think of the number as divided
into three pairs or bytes, so @%= & byte 4
byte 3 byte 2 byte 1. (Byte 4 is, in this case,
unused.)

Byte 3 can be set to 00, 01 or 02 and it

determines how numbers are printed out, that
is, their format. (You can miss out the first 0.)
Byte 3 equals 0 in the normal format—
numbers up to nine digits are printed out
normally and numbers with more than nine
digits are printed in scientific notation. Try it
for yourself. Type in PRINT 123456789 and it
will print it out as you wrote it. But type in
PRINT 123456789123 and it will print out
1.23456789E11.

If Byte 3 is equal to 1 (format 1) then all
numbers are PRINTed in scientific notation.
Byte 3 equal to 2 (format 2) is the most useful
for our needs. This is the one that PRINTs all
numbers with a fixed number of digits after
the decimal point.

Byte 2 can be any number, but its effect
depends on what type of format you chose
with Byte 3. With the normal format—format
0—Byte 2 gives the maximum number of
digits printed before reverting to scientific
notation. This is set to 09 when the computer
is switched on, so you get a maximum of nine
digits.

With format 1, Byte 2 gives the number of
digits shown before the E part, which deter-
mines the accuracy of the number.

With format 2, Byte 2 gives the number of
digits after the decimal point. Byte 2 is often
set to 02 to give two decimal figures.

Finally, Byte 1, the last pair of numbers,
specifies the width of the print fields. This is
set to OA to start with, which is hexadecimal
for the decimal 10.

Now, this all looks rather complicated but
as soon as you come to use it you'll find it's
not too bad at all. For example, if you want
numbers with 2 decimal places PRINTed in
fields 8 columns wide use @%= &20208. If
you want numbers PRINTed to one decimal
place in fields 12 columns wide use
@%= &2010C, and so on.

Here's an example of why you might want
to change the PRINT format. Type in and RUN
this one-line program:

10 PRINT 1/2, 1/3, 1/4, 1/5, 1/6

Note that the numbers run into each other
making them very difficult to read, and also
the last two numbers are PRINTed on the line
below. Now type @% &2040A and RUN the
program again. This is a much neater display
as the numbers are restricted to four decimal
places. But one number still overflows the
line. Now try @% = &20408 and RUN it once
more. The field width is reduced to 8 columns
and all five figures fit on one line. The best
way to get the hang of @% is to put in all sorts
of different numbers (in hex of course) and

I then to try printing out lists of figures and
words.

PRINT USING
Although screens can be formatted very well
by utilising the PRINT@ command, the
Dragon and Tandy have a very much more
sophisticated family of PRINT commands—
PRINT USING—which allow you far more
control over your printed output, especially
over numbers.

You can see most of the family of com-
mands in action if you type in this program:

10 CLS
20 PRINT" 0 ❑ THE DIRECTORS ARE

PLEASED TO ❑ ❑ ❑ ❑ ❑ ❑ ANNOUNCE
THE PRELIMINARY ❑ ❑ ❑ 000 ❑ ❑
❑ ACCOUNTS FOR 1984 OF:"

30 PRINT:PRINT" 0 ❑ Lithe acme widget
corporation"

40 PRINT:PRINT:PRINT"THE WORLD'S
LEADING SUPPLIERS OF"

50 C$(0) = "blue 0 ❑ ❑ widgets":
C$(1)= "green ❑ ❑ widgets":
C$(2)= "yellow widgets":
C$(3)= "red ❑ ❑ ❑ ❑ widgets"

60 FOR K=0 T03
70 PRINT TAB(23 — LEN (C$(K)));C$(K)
80 NEXT
90 FOR K =1T07000:NEXT:CLS
110 PRINT@12,"JANUARY":

PRINT@44," 	
120 PRINT:PRINT"AVERAGE WIDGET PRICES

(WHOLESALE)"
130 A$="0 0%0 0 0 0%":B$=

"00000000 —$##.##"
140 PRINT:PRINTUSINGA$;C$(0);:

PR INTUSI NG B$;12.715265
150 PRINTUSINGA$;C$(1);:PRINT

USING B$;3.7363141
160 PRINTUSINGA$;C$(2);:PRINT

USING B$;10.35824221
170 PRINTUSINGA$;C$(3);:PRINT

USING B$;.5163733
180 PRINT@416,USING"GROSS

PROFITO 0 0 0$# # #,# # #
.# # ";374241.5353

Lines 10 to 90 display a title page simply
formatted with PRINT statements. Line 70 is
interesting, though, because it shows how a
series of strings can be centred on the screen
with a number of TABs calculated according to
the lengths of the strings.

The section from Line 100 to Line 180
demonstrates the features of PRINT USING.
Line 130 sets up A$ which will be used to
display the first six letters of the strings
defined in Line 50. The length of the string is
the number of spaces between the % signs,
plus two—so the length of the string output

includes spaces occupied by the % signs.
B$ deals with the format of the numerical

output. The main function of numerical
formatting is to tidy up a column of figures by
making sure that they all contain the same
number of digits, or are tabulated on the
decimal point, or both.

The number of digits—in fact, the number
of digits including the decimal point if there is
one—is set by using the # symbol. Inserting
a decimal point in the string of # marks will
fix the position of the decimal point in each
output. Look at Line 130. B$ will PRINT
numbers with two digits before, and two
digits after the decimal point.

In addition, if you place a $ sign in front of
the # signs you will have $ printed in front of
the number. There is no £ sign for British
users as the Dragon uses an American
videochip.

If you specify ** before the # signs or $
sign, the leading spaces will be filled with
asterisks. In the case of B$ all three have been
used, but there's nothing to stop you using
one, or any combination, of the formatting
features, as your application demands.

Line 140, then, will PRINT the first six
characters of C$(0) followed by eight spaces
and a $ sign, before 12.72—formatting num-
bers rounds the numbers either up or down.

Line 150 PRINTs the first six characters in
A$, followed by *$3.74. Line 160 is similar to
Line 140, and finally Line 170 PRINTs the
number as *$0.52.

If your numbers are very large, you have
three choices of how they can be formatted.
The simplest way is to have a long string of #
signs. Or you can insert commas if you wish to
indicate thousands. This is what you've done
in Line 180. The other alternative is to use
exponential format. To see this in action alter
Line 180 as follows:

180 PRINT@416,USING"GROSS PROFIT 0
0 ❑ 0$ # # # #1111";374241.5353

The four I signs mean 'PRINT in exponential
format'—you must also limit the preceding
numeric format to # # # # . One final
interesting point about Line 180 is the com-
bination of PRINT@ and PRINT USING. This
allows you to PRINT formatted output at a
specific point on the screen.

One feature of PRINT USING that hasn't
been shown in the program is the ! sign. Try
altering Line 130 so that it reads:

130 A$=" ❑ ❑ !":B$="0 ❑ 00
0 0 0 0**$# #.# #"

When you RUN the program you'll see that !
tells the machine to PRINT the first character
of the string only.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Adventure games,

using the text compressor
Applications

CAD
	

566-572,573-577
conversions program
	

520-527
extend your typing
	

498-503
UDG designer
	

721-727,758-764
ASCII codes
	

420-421
ASCII files
	

622-623
Assembler

Dragon, Tandy
	 440-444

ATTR, Spectrum
	

656-658
Autopilot
	

733-739
Autorun
	

460-461
Axes for graphs
	

415-416,470-471

B
Barchart 	 470-476
Basic programming

bouncing ball graphics 	584-592
Commodore 64
graphics 	 420-421
defining functions 	 578-583
detecting collisions 	 656-661
formatting 	 433-439
making more of UDGs

450-457,484-491,528-533
more music
	

701-707
plotting graphs
	

413-419,470-476
probability
	

694-700
protecting programs
	

458-463
simple music
	

669-675
sort routines
	 708-711

using files
	

622-627
Bootstrap programs 	459-463
Bug tracing 	 477-483
Bulletin boards 	613,712-715
Bytes, saving

Acorn
	

546-552,593-595

C
Cardgame graphics 	 534-540
Cassette storage 	 504-505
Character sets

redefining 	 450-457
Collisions, detecting 	 656-661
Colour sprites, Commodore 	776-783
Communications 	 612-615
Computer Aided Design,

program 	 566-572,573-577
Control codes 	 775
Control commands,

in wordprocessing 	 545
Conversion program 	520-527

D
Data storage 	 413
Database management systems

752-757
Datafiles 	 623-624
Defining functions 	 578-583
Dip switches 	 646
Disk drives 	 506-508

conversions, Commodore 64 	676-682
Displays, improving 	 433-439
Distribution curves 	 697-700
Drawing in 3D 	 560-561

E
Editing programs

420
596-597

614
581

646-647
646

F
Files 	 622-627

management 	 752-757
FLASH command

Spectrum 	 434
Flight simulator

716-720,733-739,765-769
Floating point numbers 790-796
Frame print,

understanding 	 784-789

G
Games programming

adventures, planning your own 422-427
duck shooting game 	492-497
using joysticks 	 464-469
flight simulator 	716-720,733-739
pontoon game 	535-540,553-559
text compressor

628-636,648-655,684-689
Graphic pads 	 770-774
Graphic tablets 	 770-774
Graphics, CAD program 	566-572
Graphics, hi-res

Commodore 	 748-751
Graphics, ROM

Commodore 64- 	 420
Graphs 	 413-419
Grid, drawing a 	 512-513

H
Histograms and barcharts 	470-476

Imperial to metric
conversions

Interest on savings
program

Inversing the screen
ZX81

J
Joysticks,

duck shooting game
in games

JOYSTK
Dragon, Tandy

Jungle picture

K
Keyboard, as a musical instrument

L
Legends

for graphs
Letter frequency,

for text compressor
Light pens

M
Machine code programming

animation

Dragon, Tandy
	

637-641
Program symbols

Commodore 64
	

420
Projectiles 	 740-747
Protecting disks and tapes 	683
Protecting programs 	459-463

Q
Quote mode

Commodore 64
	

420

R
ROM graphics

Commodore 64
	

420

S
Screen pictures

from UDGs
	

484-491
Seikosha codes 	 647
Serial access

tape systems
	

505-506
Sort routines 	 708-711
Space station,

drawing a
	

666-668
Speed POKE

Dragon, Tandy 	 444
Spelling-checker 	 543-544
Sprites, Commodore
	

776-783
Storage devices 	 504-508
String functions

Acorn, Spectrum
	

581
Stunt rider UDG, Vic 20

	
429

Submarine UDG, Vic 20
	

430
SYS Commodore 64, Vic 20

	
463

Tape storage 	 504-505
Teletext 	 614,715
Text compressor

628-636,648-655,684-689
Tokens

Commodore 64 	 421
Trace program

Spectrum 	 477-483
Commodore, Vic 20 	 514-519

TVs and monitors 	 445-449
Typing tutor part 4 	 498-503

U
UDGs

adapting
	

758-764
animals
	

484-491,528-533
creating extra
	

450
program to design
	

721-727
& high resolution graphics

	
531

User defined functions 	578-583

V
Videotex 	 614,715
Viewdata
	

715
Virtual memory 	 545
Volatile storage
	

504

Wireframe drawing,
and colour
	

512
combining images
	

662-668
in 3 dimensions
	

560-565
with perspective
	

605-611
Wordprocessing 	 541-545

Vic 20, ZX8I
	

428-432
assembler

Dragon, Tandy
	

430-444
Spectrum
	

477-482
modifying programs for
disk, Commodore 64
	

676-682
modifying programs for
the microdrive
	

616-621
program squeezer
Acorn
	

546-552,593-595
Dragon, Tandy
	

637-641
sound effects, Spectrum 	728-732

Memory
saving, Acorn
	

546-552
SAVEing on tape
	

532-533
Microdrives 	 505

saving and loading on
	

616-621
Modems 	 612-615,712-714
Monitors and TVs 	 445-449
Motion

effects of gravity
	

740
horizontal
	

740
vertical 	 743

equations of 	 584-592
Multicoloured background 	490
Music 	 669-675,701-707

N
Networks 	 614,715
Number keys

redefining
	

450-457
Number storage 	 790-796

0
On-board graphics

Commodore 64
	

420
OUT, Spectrum
	

728-732

P
Parameters for functions

	
578-583

Pascal's Triangle 	 697

	

520-527 	Pie charts
	

474-476
PEEK, Commodore 64

	

583 	Vic 20, 	 656,658-659
Peripherals

	

432 	bulletin boards 	 712-715
data storage devices 	504-508
light pens 	 690-693
modems 	 612-615

	

492-497 	setting up a printer 	 642-647

	

464-469 	TVs and monitors 	 445-449
Who needs wordprocessors? 	541-545

	

468-469 	Planning screen displays 	433-439

	

485-491 	POINT, Acorn 	 656,659-660
Dragon, Tandy 	 556,660-661

Pontoon program 	534-540,553-559,
598-604

PPOINT, Dragon, Tandy 	656,660-661

	

672-674 	PRINT 	 434-438
PRINT AT

Acorn
	

434
Spectrum
	

434,436
PRINT SPC

	

416 	Commodore 64, Vic 20
	

434-435
PRINT TAB
	

434-438

	

636 	PRINT @

	

690-693 	Dragon, Tandy
	 435

PRINT #, Commodore 64, Vic 20
	

644
Printers, setting up
	

642-647
control commands
	

644-647
Program squeezer

Acorn
	

546-552,593-595

Commodore 64
Dragon

684-689 	Electronic mail
Ellipse, drawing a
Epson codes
Escape codes

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

The number crunchers are out in
force—a hungry snake digests the
dwindling digits in the exciting SNAKE
GAME

Hit 'em right between the eyes with
thrilling titles and prompts. Make the
headlines really jump out of the screen
with two ways to produce DISPLAY
TYPEFACES on your micro

Linking up the hardware is not as easy
as it seems! So, in SETTING UP A DISK
DRIVE, we explain the commands,
procedures and pitfalls

Muzzle velocity and elevation are
crucial if you want to clear the barrier
and trash the target with shots lobbed
from your heavy howitzer in a
TRAJECTORY GAME. Also find out
about the realities of getting into orbit

UPlus a comprehensive 4 page INDEX to
parts 14-26 of INPUT

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

